Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(18): 3906-3935, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37592893

RESUMO

Over the past 15 years, the field of oncology research has witnessed significant progress in the development of new cell culture models, such as tumor-on-chip (ToC) systems. In this comprehensive overview, we present a multidisciplinary perspective by bringing together physicists, biologists, clinicians, and experts from pharmaceutical companies to highlight the current state of ToC research, its unique features, and the challenges it faces. To offer readers a clear and quantitative understanding of the ToC field, we conducted an extensive systematic analysis of more than 300 publications related to ToC from 2005 to 2022. ToC offer key advantages over other in vitro models by enabling precise control over various parameters. These parameters include the properties of the extracellular matrix, mechanical forces exerted on cells, the physico-chemical environment, cell composition, and the architecture of the tumor microenvironment. Such fine control allows ToC to closely replicate the complex microenvironment and interactions within tumors, facilitating the study of cancer progression and therapeutic responses in a highly representative manner. Importantly, by incorporating patient-derived cells or tumor xenografts, ToC models have demonstrated promising results in terms of clinical validation. We also examined the potential of ToC for pharmaceutical industries in which ToC adoption is expected to occur gradually. Looking ahead, given the high failure rate of clinical trials and the increasing emphasis on the 3Rs principles (replacement, reduction, refinement of animal experimentation), ToC models hold immense potential for cancer research. In the next decade, data generated from ToC models could potentially be employed for discovering new therapeutic targets, contributing to regulatory purposes, refining preclinical drug testing and reducing reliance on animal models.


Assuntos
Técnicas de Cultura de Células , Neoplasias , Humanos , Animais , Indústria Farmacêutica , Matriz Extracelular , Microambiente Tumoral , Neoplasias/tratamento farmacológico
2.
Lab Chip ; 22(22): 4443-4455, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36314259

RESUMO

In vitro cell cultures are most often performed in unphysiological hyperoxia since the oxygen partial pressure of conventional incubators is set at 141 mmHg (18.6%, close to ambient air oxygen 20.1%). This value is higher than human tissue oxygen levels, as the in vivo oxygen partial pressures range from 104 mmHg (lung alveoli) to 8 mmHg (skin epidermis). Importantly, under pathological conditions such as cancer, cells can experience oxygen pressure lower than the healthy tissue. Although hypoxic incubators can regulate gas oxygen, they do not take into account the dissolved oxygen concentration in the cell culture medium. In the context of organ on chip and micro-physiological system development, we present here a new system, called Oxalis (OXygen ALImentation System) that allows fine control of the dissolved oxygen level in the cell culture medium. Oxalis regulates simultaneously the gas composition and the inlet reservoir pressure by modulating the pneumatic valve opening. This dual regulation allows both the pressure driven liquid flowrate and the level of oxygen dissolved in the chip to be controlled independently. Oxalis offers unprecedented features such as an oxygen equilibration time lower than 3 minutes and an accuracy of 3 mmHg. These performances can be reached for chip perfusion flow as low as 1 µL min-1. This low flow rate allows the shear stress experienced by the cells in the chip to be accurately controlled. In addition, the system enables modulation of the pH in the cell culture medium through the modulation of CO2. The fine control and monitoring of both O2 and pH pave the way for new precise investigations on physiological and pathological biological processes. Using Oxalis in the context of tumor-on-chip, we demonstrate the capacity of the system to recapitulate hypoxia-induced gene expression, offering an innovative strategy for future studies on the role of hypoxia in malignant progression and drug resistance.


Assuntos
Neoplasias , Oxigênio , Humanos , Hipóxia , Técnicas de Cultura de Células , Perfusão
3.
Cancers (Basel) ; 11(9)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480265

RESUMO

Bladder cancer (BC) is a disease that requires lifelong surveillance due to its high recurrence rate. An efficient method for the non-invasive rapid monitoring of patient prognosis and downstream phenotype characterization is warranted. Here, we develop an integrated procedure to detect aggressive mesenchymal exfoliated bladder cancer cells (EBCCs) from patients in a label-free manner. Using a combination of filtration and inertial focusing principles, the procedure allowed the focusing of EBCCs in a single stream-line for high-throughput separation from other urine components such as large squamous cells and blood cells using a microfluidic sorting device. Characterization of enriched cells can be completed within hours, suggesting a potential utility for real-time detection. We also demonstrate high efficiency of cancer cell recovery (93.3 ± 4.8%) and specific retrieval of various epithelial to mesenchymal transition (EMT) phenotype cell fractions from respective outlets of the microfluidic device. EMT is closely associated with metastasis, drug resistance and tumor-initiating potential. This procedure is validated with clinical samples, and further demonstrate the efficacy of bladder wash procedure to reduce EBCCs counts over time. Overall, the uniqueness of a rapid and non-invasive method permitting the separation of different EMT phenotypes shows high potential for clinical utility. We expect this approach will better facilitate the routine screening procedure in BC and greatly enhance personalized treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...