Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 4(3): 11, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26101724

RESUMO

PURPOSE: Enhanced drug exposure to the ocular surface typically relies on inclusion of viscosity-enabling agents, whereas delivery to the back of the eye generally focuses on invasive means, such as intraocular injections. Using our novel mucus-penetrating particle (MPP) technology, which rapidly and uniformly coats and penetrates mucosal barriers, we evaluated if such drug formulations could increase ocular drug exposure and improve topical drug delivery. METHODS: Pharmacokinetic (PK) profiling of topically administered loterprednol etabonate formulated as MPP (LE-MPP) was performed in rabbits and a larger species, the mini-pig. Pharmacodynamic evaluation was done in a rabbit model of VEGF-induced retinal vascular leakage. Cellular potency and PK profile were determined for a second compound, KAL821, a novel receptor tyrosine kinase inhibitor (RTKi). RESULTS: We demonstrated in animals that administration of LE-MPP increased exposure at the ocular surface and posterior compartments. Furthermore using a rabbit vascular leakage model, we demonstrated that biologically effective drug concentrations of LE were delivered to the back of the eye using the MPP technology. We also demonstrated that a novel RTKi formulated as MPPs provided drug levels to the back of the eye above its cellular inhibitory concentration. CONCLUSIONS: Topical dosing of MPPs of LE or KAL821 enhanced drug exposure at the front of the eye, and delivered therapeutically relevant drug concentrations to the back of the eye, in animals. TRANSLATIONAL RELEVANCE: These preclinical data support using MPP technology to engineer topical formulations to deliver therapeutic drug levels to the back of the eye and could provide major advancements in managing sight-threatening diseases.

2.
J Biol Chem ; 279(20): 21096-108, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-14990568

RESUMO

CooA is a dimeric CO-sensing heme protein from Rhodospirillum rubrum. The heme iron in reduced CooA is six-coordinate; the axial ligands are His-77 and Pro-2. CO displaces Pro-2 and induces a conformation change that allows CooA to bind DNA and activate transcription of coo genes. Equilibrium CO binding is cooperative, with a Hill coefficient of n = 1.4, P(50) = 2.2 microm, and estimated Adair constants K(1) = 0.16 and K(2) = 1.3 microm(-1). The rates of CO binding and release are both strongly biphasic, with roughly equal amplitudes for the fast and slow phases. The association rates show a hyperbolic dependence on [CO], consistent with Pro-2 dissociation being rate-limiting. The kinetic characteristics of the transiently formed five-coordinate heme are probed via flash photolysis. These observations are integrated into a kinetic model, in which CO binding to one subunit decreases the rate of Pro-2 rebinding in the second, leading to a net increase in affinity for the second CO. The CO adduct exists in slowly interconverting "open" and "closed" forms. This interconversion probably involves the large-scale motions required to bring the DNA-binding domains into proper orientation. The combination of low CO affinity, slow CO binding, and slow conformational transitions ensures that activation of CooA only occurs at high (micromolar) and sustained (> or =1 min) levels of CO. When micromolar levels do occur, positive cooperativity allows efficient activation over a narrow range of CO concentrations.


Assuntos
Proteínas de Bactérias/química , Monóxido de Carbono/metabolismo , Hemeproteínas/química , Rhodospirillum rubrum/metabolismo , Transativadores/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Hemeproteínas/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Análise Espectral Raman , Transativadores/metabolismo
3.
Inorg Chem ; 42(7): 2288-93, 2003 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-12665362

RESUMO

The photochemistry of various Roussin's red ester compounds of the general formula Fe(2)(SR)(2)(NO)(4), where R = CH(3), CH(2)CH(3), CH(2)C(6)H(5), CH(2)CH(2)OH, and CH(2)CH(2)SO(3)(-), were investigated. Continuous photolyses of these ester compounds in aerated solutions led to the release of NO with moderate quantum yields for the photodecomposition of the ester (Phi(RSE) = 0.02-0.13). Electrochemical studies using an NO electrode demonstrated that 4 mol of NO are generated for each mole of ester undergoing photodecomposition. Nanosecond flash photolysis studies of Fe(2)(SR)(2)(NO)(4) (where R = CH(2)CH(2)OH and CH(2)CH(2)SO(3)(-)) indicate that the initial photoreaction is the reversible dissociation of NO. In the absence of oxygen, the presumed intermediate, Fe(2)(SR)(2)(NO)(3), undergoes second-order reaction with NO to regenerate the parent cluster with a rate constant of k(NO) = 1.1 x 10(9) M(-1) s(-1) for R = CH(2)CH(2)OH. Under aerated conditions the intermediate reacts with oxygen to give permanent photochemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...