Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Neural Syst ; 32(5): 2250006, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35225167

RESUMO

Recent modeling of brain activities encompasses the fusion of different modalities. However, fusing brain modalities requires not only the efficient and compatible representation of the signals but also the benefits associated with it. For instance, the combination of the functional characteristics of EEGs with the structural features of functional magnetic resonance imaging contributes to a better interpretation localization of brain activities. In this paper, we consider the EEG signals as parallel 2D string images from which we extract their visual abstract representations of EEG features. This representation can benefit not only the EEG modeling of the signals but also a future fusion with another modality, like fMRI. In particular, the new methodology, called Bar-LG, provides a reduced discretization of the EEG signals into selected minima/maxima in order to be used in a form of tokens for EEG brain activities of interest. A formal context-free language is used to express and represent the extracted tokens for the selected active brain regions. Then, a Generalized Stochastic Petri-Nets (GSPN) model is used for expressing the functional associations and interactions of these EEG signals as 2D image regions. An illustrative EEG example of epileptic seizure is presented to show the Bar-LG methodology's abstract capabilities.


Assuntos
Mapeamento Encefálico , Epilepsia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Humanos , Imageamento por Ressonância Magnética/métodos
2.
IEEE J Biomed Health Inform ; 23(4): 1710-1719, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30188842

RESUMO

The human cerebellum contains almost 50% of the neurons in the brain, although its volume does not exceed 10% of the total brain volume. The goal of this study is to derive the functional network of the cerebellum during the resting-state and then compare the ensuing group networks between males and females. Toward this direction, a spatially constrained version of the classic spectral clustering algorithm is proposed and then compared against conventional spectral graph theory approaches, such as spectral clustering, and N-cut, on synthetic data as well as on resting-state fMRI data obtained from the Human Connectome Project (HCP). The extracted atlas was combined with the anatomical atlas of the cerebellum resulting in a functional atlas with 46 regions of interest. As a final step, a gender-based network analysis of the cerebellum was performed using the data-driven atlas along with the concept of the minimum spanning trees. The simulation analysis results confirm the dominance of the spatially constrained spectral clustering approach in discriminating activation patterns under noisy conditions. The network analysis results reveal statistically significant differences in the optimal tree organization between males and females. In addition, the dominance of the left VI lobule in both genders supports the results reported in a previous study of ours. To our knowledge, the extracted atlas comprises the first resting-state atlas of the cerebellum based on HCP data.


Assuntos
Cerebelo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Algoritmos , Cerebelo/fisiologia , Análise por Conglomerados , Conectoma , Feminino , Humanos , Masculino , Rede Nervosa/fisiologia
3.
IEEE Trans Inf Technol Biomed ; 14(3): 613-21, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20123575

RESUMO

Wearable health-monitoring systems (WHMSs) represent the new generation of healthcare by providing real-time unobtrusive monitoring of patients' physiological parameters through the deployment of several on-body and even intrabody biosensors. Although several technological issues regarding WHMS still need to be resolved in order to become more applicable in real-life scenarios, it is expected that continuous ambulatory monitoring of vital signs will enable proactive personal health management and better treatment of patients suffering from chronic diseases, of the elderly population, and of emergency situations. In this paper, we present a physiological data fusion model for multisensor WHMS called Prognosis. The proposed methodology is based on a fuzzy regular language for the generation of the prognoses of the health conditions of the patient, whereby the current state of the corresponding fuzzy finite-state machine signifies the current estimated health state and context of the patient. The operation of the proposed scheme is explained via detailed examples in hypothetical scenarios. Finally, a stochastic Petri net model of the human-device interaction is presented, which illustrates how additional health status feedback can be obtained from the WHMS' user.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Lógica Fuzzy , Monitorização Ambulatorial/métodos , Linguagens de Programação , Processamento de Sinais Assistido por Computador , Pressão Sanguínea , Vestuário , Eletrocardiografia/métodos , Humanos , Fatores de Risco , Processos Estocásticos , Sinais Vitais/fisiologia
4.
IEEE Trans Image Process ; 17(11): 2236-55, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18854254

RESUMO

We consider the problem of recognizing 3-D objects from 2-D images using geometric models and assuming different viewing angles and positions. Our goal is to recognize and localize instances of specific objects (i.e., model-based) in a scene. This is in contrast to category-based object recognition methods where the goal is to search for instances of objects that belong to a certain visual category (e.g., faces or cars). The key contribution of our work is improving 3-D object recognition by integrating Algebraic Functions of Views (AFoVs), a powerful framework for predicting the geometric appearance of an object due to viewpoint changes, with indexing and learning. During training, we compute the space of views that groups of object features can produce under the assumption of 3-D linear transformations, by combining a small number of reference views that contain the object features using AFoVs. Unrealistic views (e.g., due to the assumption of 3-D linear transformations) are eliminated by imposing a pair of rigidity constraints based on knowledge of the transformation between the reference views of the object. To represent the space of views that an object can produce compactly while allowing efficient hypothesis generation during recognition, we propose combining indexing with learning in two stages. In the first stage, we sample the space of views of an object sparsely and represent information about the samples using indexing. In the second stage, we build probabilistic models of shape appearance by sampling the space of views of the object densely and learning the manifold formed by the samples. Learning employs the Expectation-Maximization (EM) algorithm and takes place in a "universal," lower-dimensional, space computed through Random Projection (RP). During recognition, we extract groups of point features from the scene and we use indexing to retrieve the most feasible model groups that might have produced them (i.e., hypothesis generation). The likelihood of each hypothesis is then computed using the probabilistic models of shape appearance. Only hypotheses ranked high enough are considered for further verification with the most likely hypotheses verified first. The proposed approach has been evaluated using both artificial and real data, illustrating promising performance. We also present preliminary results illustrating extensions of the AFoVs framework to predict the intensity appearance of an object. In this context, we have built a hybrid recognition framework that exploits geometric knowledge to hypothesize the location of an object in the scene and both geometrical and intesnity information to verify the hypotheses.


Assuntos
Algoritmos , Inteligência Artificial , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...