Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 372(6545)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34045326

RESUMO

Laser-metal additive manufacturing capabilities have advanced from single-material printing to multimaterial/multifunctional design and manufacturing. Material-structure-performance integrated additive manufacturing (MSPI-AM) represents a path toward the integral manufacturing of end-use components with innovative structures and multimaterial layouts to meet the increasing demand from industries such as aviation, aerospace, automobile manufacturing, and energy production. We highlight two methodological ideas for MSPI-AM-"the right materials printed in the right positions" and "unique structures printed for unique functions"-to realize major improvements in performance and function. We establish how cross-scale mechanisms to coordinate nano/microscale material development, mesoscale process monitoring, and macroscale structure and performance control can be used proactively to achieve high performance with multifunctionality. MSPI-AM exemplifies the revolution of design and manufacturing strategies for AM and its technological enhancement and sustainable development.

2.
Materials (Basel) ; 14(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562718

RESUMO

This studied aimed at improving the mechanical properties for a new biopolymer feedstock using laser-sintering technology, especially when its laser-sintered parts are intended to be applied in the industrial and medical fields. Process parameter optimization and thermal post-processing are two approaches proposed in this work to improve the mechanical properties of laser-sintered 10 wt % cellulose-polylactic acid (10%-CPLA) parts. Laser-sintering experiments using 23 full factorial design method were conducted to assess the effects of process parameters on parts' mechanical properties. A simulation of laser-energy distribution was carried out using Matlab to evaluate the experimental results. The characterization of mechanical properties, crystallinity, microstructure, and porosity of laser-sintered 10%-CPLA parts after thermal post-processing of different annealing temperatures was performed to analyze the influence of thermal post-processing on part properties. Image analysis of fracture surfaces was used to obtain the porosity of laser-sintered 10%-CPLA parts. Results showed that the optimized process parameters for mechanical properties of laser-sintered 10%-CPLA parts were laser power 27 W, scan speed 1600 mm/s, and scan spacing 0.1 mm. Thermal post-processing at 110 °C produced best properties for laser-sintered 10%-CPLA parts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...