Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(19): 7774-7783, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28330871

RESUMO

Defects in mitochondrial cytochrome c oxidase or respiratory chain complex IV (CIV) assembly are a frequent cause of human mitochondrial disorders. Specifically, mutations in four conserved assembly factors impinging the biogenesis of the mitochondrion-encoded catalytic core subunit 2 (COX2) result in myopathies. These factors afford stability of newly synthesized COX2 (the dystonia-ataxia syndrome protein COX20), a protein with two transmembrane domains, and maturation of its copper center, CuA (cardiomyopathy proteins SCO1, SCO2, and COA6). COX18 is an additional COX2 assembly factor that belongs to the Oxa1 family of membrane protein insertases. Here, we used a gene-editing approach to generate a human COX18 knock-out HEK293T cell line that displays isolated complete CIV deficiency. We demonstrate that COX20 stabilizes COX2 during insertion of its N-proximal transmembrane domain, and subsequently, COX18 transiently interacts with COX2 to promote translocation across the inner membrane of the COX2 C-tail that contains the apo-CuA site. The release of COX18 from this complex coincides with the binding of the SCO1-SCO2-COA6 copper metallation module to COX2-COX20 to finalize COX2 biogenesis. Therefore, COX18 is a new candidate when screening for mitochondrial disorders associated with isolated CIV deficiency.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Cardiomiopatias/metabolismo , Proteínas de Transporte/metabolismo , Domínio Catalítico , Linhagem Celular , Membrana Celular/metabolismo , Citrato (si)-Sintase/metabolismo , Cobre/química , Ciclo-Oxigenase 2/metabolismo , Endopeptidase K/metabolismo , Edição de Genes , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Imuno-Histoquímica , Mitocôndrias/metabolismo , Chaperonas Moleculares , Doenças Musculares/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Plasmídeos/metabolismo , Transporte Proteico
2.
EMBO Rep ; 18(3): 477-494, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28082314

RESUMO

Defects in mitochondrial respiratory chain complex IV (CIV) frequently cause encephalocardiomyopathies. Human CIV assembly involves 14 subunits of dual genetic origin and multiple nucleus-encoded ancillary factors. Biogenesis of the mitochondrion-encoded copper/heme-containing COX1 subunit initiates the CIV assembly process. Here, we show that the intermembrane space twin CX9C protein CMC1 forms an early CIV assembly intermediate with COX1 and two assembly factors, the cardiomyopathy proteins COA3 and COX14. A TALEN-mediated CMC1 knockout HEK293T cell line displayed normal COX1 synthesis but decreased CIV activity owing to the instability of newly synthetized COX1. We demonstrate that CMC1 stabilizes a COX1-COA3-COX14 complex before the incorporation of COX4 and COX5a subunits. Additionally, we show that CMC1 acts independently of CIV assembly factors relevant to COX1 metallation (COX10, COX11, and SURF1) or late stability (MITRAC7). Furthermore, whereas human COX14 and COA3 have been proposed to affect COX1 mRNA translation, our data indicate that CMC1 regulates turnover of newly synthesized COX1 prior to and during COX1 maturation, without affecting the rate of COX1 synthesis.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/deficiência , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Biossíntese de Proteínas , Alelos , Ciclo-Oxigenase 1/metabolismo , Estabilidade Enzimática , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
3.
Hum Mol Genet ; 23(11): 2901-13, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24403053

RESUMO

Cytochrome c oxidase (CIV) deficiency is one of the most common respiratory chain defects in patients presenting with mitochondrial encephalocardiomyopathies. CIV biogenesis is complicated by the dual genetic origin of its structural subunits, and assembly of a functional holoenzyme complex requires a large number of nucleus-encoded assembly factors. In general, the functions of these assembly factors remain poorly understood, and mechanistic investigations of human CIV biogenesis have been limited by the availability of model cell lines. Here, we have used small interference RNA and transcription activator-like effector nucleases (TALENs) technology to create knockdown and knockout human cell lines, respectively, to study the function of the CIV assembly factor COX20 (FAM36A). These cell lines exhibit a severe, isolated CIV deficiency due to instability of COX2, a mitochondrion-encoded CIV subunit. Mitochondria lacking COX20 accumulate CIV subassemblies containing COX1 and COX4, similar to those detected in fibroblasts from patients carrying mutations in the COX2 copper chaperones SCO1 and SCO2. These results imply that in the absence of COX20, COX2 is inefficiently incorporated into early CIV subassemblies. Immunoprecipitation assays using a stable COX20 knockout cell line expressing functional COX20-FLAG allowed us to identify an interaction between COX20 and newly synthesized COX2. Additionally, we show that SCO1 and SCO2 act on COX20-bound COX2. We propose that COX20 acts as a chaperone in the early steps of COX2 maturation, stabilizing the newly synthesized protein and presenting COX2 to its metallochaperone module, which in turn facilitates the incorporation of mature COX2 into the CIV assembly line.


Assuntos
Proteínas de Transporte/metabolismo , Ciclo-Oxigenase 2/metabolismo , Deficiência de Citocromo-c Oxidase/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Ciclo-Oxigenase 2/genética , Deficiência de Citocromo-c Oxidase/genética , Deficiência de Citocromo-c Oxidase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Proteínas de Membrana/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Chaperonas Moleculares , Estabilidade Proteica
4.
Antioxid Redox Signal ; 19(16): 1940-52, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22937827

RESUMO

SIGNIFICANCE: Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates. RECENT ADVANCES: Regulation of COX assembly involves several reactive oxygen species and redox-regulated steps. These include: (i) Intricate redox-controlled machineries coordinate the expression of COX isoenzymes depending on the environmental oxygen concentration. (ii) COX is a heme A-copper metalloenzyme. COX copper metallation involves the copper chaperone Cox17 and several other recently described cysteine-rich proteins, which are oxidatively folded in the mitochondrial intermembrane space. Copper transfer to COX subunits 1 and 2 requires concomitant transfer of redox power. (iii) To avoid the accumulation of reactive assembly intermediates, COX is regulated at the translational level to minimize synthesis of the heme A-containing Cox1 subunit when assembly is impaired. CRITICAL ISSUES: An increasing number of regulatory pathways converge to facilitate efficient COX assembly, thus preventing oxidative stress. FUTURE DIRECTIONS: Here we will review on the redox-regulated COX biogenesis steps and will discuss their physiological relevance. Forthcoming insights into the precise regulation of mitochondrial COX biogenesis in normal and stress conditions will likely open future perspectives for understanding mitochondrial redox regulation and prevention of oxidative stress.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Oxirredução
5.
J Biol Chem ; 287(37): 31258-69, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22767599

RESUMO

The Mia40 import pathway facilitates the import and oxidative folding of cysteine-rich protein substrates into the mitochondrial intermembrane space. Here we describe the in vitro and in organello oxidative folding of Cmc1, a twin CX(9)C-containing substrate, which contains an unpaired cysteine. In vitro, Cmc1 can be oxidized by the import receptor Mia40 alone when in excess or at a lower rate by only the sulfhydryl oxidase Erv1. However, physiological and efficient Cmc1 oxidation requires Erv1 and Mia40. Cmc1 forms a stable intermediate with Mia40 and is released from this interaction in the presence of Erv1. The three proteins are shown to form a ternary complex in mitochondria. Our results suggest that this mechanism facilitates efficient formation of multiple disulfides and prevents the formation of non-native disulfide bonds.


Assuntos
Metalochaperonas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Metalochaperonas/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Ligação Proteica , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Mol Genet Genomics ; 283(2): 111-22, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19967545

RESUMO

In Saccharomyces cerevisiae, the RAM network is involved in cell separation after cytokinesis, cell integrity and cell polarity. The key function of this network is the regulation of the activity of the protein kinase Cbk1p, which is a member of the conserved NDR kinase family. Cbk1p function is controlled by its sub-cellular localization and at least two phosphorylation events: an auto phosphorylation in the kinase domain (S570) and the phosphorylation of a C-terminal hydrophobic motif by an upstream kinase (T743). After a UV mutagenesis, we have isolated 115 independent extragenic suppressors of four ram mutations: tao3, hym1, kic1 and sog2. Over 50% of the suppressors affect a single residue in Cbk1p (S745F), which is close to the phosphorylation site in the hydrophobic motif. Our results show that the CBK1-S745F allele leads to a constitutively active form of Cbk1p that is independent of the upstream RAM network. We hypothesize that the mutant Cbk1-S745Fp mimics the effect of the phosphorylation of T743.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos , Polaridade Celular , Sequência Conservada , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Redes e Vias Metabólicas , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína/genética , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Supressão Genética , Fatores de Transcrição/metabolismo
7.
Mol Microbiol ; 75(2): 474-88, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20025673

RESUMO

The Oxa1/YidC/Alb3 family plays a key role in the biogenesis of the respiratory and photosynthetic complexes in bacteria and organelles. In Saccharomyces cerevisiae, Oxa1 mediates the co-translational insertion of mitochondrially encoded subunits of the three respiratory complexes III, IV and V within the inner membrane and also controls a late step in complex V assembly. No crystal structure of YidC or Oxa1 is available and little is known about the respective role of each transmembrane segment (TM) and hydrophilic loop of this polytopic protein on the biogenesis of the three complexes. Here, we have generated a collection of random point mutations located in the hydrophobic and hydrophilic domains of the protein and characterized their effects on the assembly of the three respiratory complexes. Our results show mutant-dependent differential effects, particularly on complex V. In order to identify tertiary interactions within Oxa1, we have also isolated revertants carrying second-site compensatory mutations able to restore respiration. This analysis reveals the existence of functional interactions between TM2 and TM5, TM4 and TM5 as well as between TM4 and loop 2, highlighting the key position of TM4 and TM5 in the Oxa1 protein.


Assuntos
Análise Mutacional de DNA/métodos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Substituição de Aminoácidos , Sítios de Ligação , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Immunoblotting , Proteínas de Membrana Transportadoras/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Consumo de Oxigênio/genética , Fenótipo , Fotossíntese/genética , Biossíntese de Proteínas , Subunidades Proteicas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Genetics ; 183(1): 161-73, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19546315

RESUMO

In Saccharomyces cerevisiae the protein kinase Cbk1p is a member of the regulation of Ace2p and cellular morphogenesis (RAM) network that is involved in cell separation after cytokinesis, cell integrity, and cell polarity. In cell separation, the RAM network promotes the daughter cell-specific localization of the transcription factor Ace2p, resulting in the asymmetric transcription of genes whose products are necessary to digest the septum joining the mother and the daughter cell. RAM and SSD1 play a role in the maintenance of cell integrity. In the presence of a wild-type SSD1 gene, deletion of any RAM component causes cell lysis. We show here that some mutations of CBK1 also lead to a reduced fertility and a reduced expression of some of the mating type-specific genes. As polarized growth is an integral part of the mating process, we have isolated suppressors of the fertility defect. Among these, mutations in BRR1 or MPT5 lead to a restoration of fertility and a more-or-less pronounced restoration of polarity; they also show genetic interactions with SSD1. Our experiments reveal a multilayered system controlling aspects of cell separation, cell integrity, mating, and polarized growth.


Assuntos
Fertilidade/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ligação a RNA/genética , RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alelos , Adesão Celular/genética , Polaridade Celular/genética , Epistasia Genética/fisiologia , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Supressão Genética
9.
Biol Cell ; 100(6): 343-54, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18076379

RESUMO

BACKGROUND INFORMATION: The CBK1 gene of Saccharomyces cerevisiae encodes a protein kinase that is a member of the NDR (nuclear Dbf2-related) family of protein kinases, which are involved in morphogenesis and cell proliferation. Previous studies have shown that deletion of CBK1 leads to a loss of polarity and the formation of large aggregates of cells. This aggregation phenotype is due to the loss of the daughter cell-specific accumulation of the transcription factor Ace2p, which is responsible for the transcription of genes whose products are necessary for the final separation of the mother and the daughter at the end of cell division. RESULTS: We show that the daughter cell-specific localization of Ace2p does not occur via a specific localization of the ACE2 mRNA and that, in vivo, the transcription of CTS1, one of the principal targets of Ace2p, is daughter cell-specific. We have shown that extragenic suppressors of the Deltacbk1 aggregation phenotype are located in the nuclear exportin CRM1 and ACE2. These mutations disrupt the interaction of Ace2p and Crm1p, thus impairing Ace2p export and resulting in the accumulation of the protein in both mother and daughter cell nuclei. CONCLUSIONS: We propose that in the daughter cell nucleus Cbk1p phosphorylates the Ace2p nuclear export signal, and that this phosphorylation blocks the export of Ace2p via Crm1p, thus promoting the daughter cell-specific nuclear accumulation of Ace2p.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Carioferinas/genética , Mutação , Receptores Citoplasmáticos e Nucleares/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Divisão Celular , Núcleo Celular/genética , Quitinases/genética , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Carioferinas/metabolismo , Proteínas Serina-Treonina Quinases , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/análise , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Proteína Exportina 1
10.
Genetics ; 175(3): 1105-15, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17194787

RESUMO

Oxa1p is a key component of the general membrane insertion machinery of eukaryotic respiratory complex subunits encoded by the mitochondrial genome. In this study, we have generated a respiratory-deficient mutant, oxa1-E65G-F229S, that contains two substitutions in the predicted intermembrane space domain of Oxa1p. The respiratory deficiency due to this mutation is compensated for by overexpressing RMD9. We show that Rmd9p is an extrinsic membrane protein facing the matrix side of the mitochondrial inner membrane. Its deletion leads to a pleiotropic effect on respiratory complex biogenesis. The steady-state level of all the mitochondrial mRNAs encoding respiratory complex subunits is strongly reduced in the Deltarmd9 mutant, and there is a slight decrease in the accumulation of two RNAs encoding components of the small subunit of the mitochondrial ribosome. Overexpressing RMD9 leads to an increase in the steady-state level of mitochondrial RNAs, and we discuss how this increase could suppress the oxa1 mutations and compensate for the membrane insertion defect of the subunits encoded by these mRNAs.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Expressão Gênica , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Respiração Celular/genética , Biologia Computacional , Citocromos/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Immunoblotting , Proteínas de Membrana/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mutagênese , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrofotometria
11.
Gene ; 354: 53-7, 2005 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-15908145

RESUMO

Oxa1p is a key component of the machinery for the insertion of membrane proteins in mitochondria, and in the yeast Saccharomyces cerevisiae, the deletion of OXA1 impairs the biogenesis of the three respiratory complexes of dual genetic origin. Oxa1p is formed from three domains located in the intermembrane space, the inner membrane and the mitochondrial matrix. We have isolated a high copy suppressor able to partially compensate for the respiratory deficiency caused by a large deletion of the matrix domain. We show that the suppressor gene corresponds to the nuclear transcriptional activator Hap4p which is known to regulate respiratory functions.


Assuntos
Fator de Ligação a CCAAT/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Western Blotting , Fator de Ligação a CCAAT/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Vetores Genéticos/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Consumo de Oxigênio/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...