Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(9): 13978-13990, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32403862

RESUMO

We demonstrate that a laser-based synchrotron X-ray source can be used to image and characterize in a single laser shot spherical capsules similar to ICF targets. Thus, we establish this source potential for real-time ultrafast imaging of the ICF laser driver interaction with the target. To produce the X-ray beam we used a 160 TW high power laser system with 3.2 J and 20 fs incident on a supersonic gas jet target at 2.5 Hz repetition rate. We produced 2.7 × 109 photons/0.1% BW/sr/shot at 10 keV with a critical energy Ec = 15.1 keV. In our experimental conditions the spatial resolution was 4.3 µm in the object plane. We show that it is feasible to image the capsule structure and experimentally retrieve the phase information.

2.
Phys Rev Lett ; 121(4): 042501, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30095940

RESUMO

Full calculations of six-nucleon reactions with a three-body final state have been elusive and a long-standing issue. We present neutron spectra from the T(t,2n)α (TT) reaction measured in inertial confinement fusion experiments at the OMEGA laser facility at ion temperatures from 4 to 18 keV, corresponding to center-of-mass energies (E_{c.m.}) from 16 to 50 keV. A clear difference in the shape of the TT-neutron spectrum is observed between the two E_{c.m.}, with the ^{5}He ground state resonant peak at 8.6 MeV being significantly stronger at the higher than at the lower energy. The data provide the first conclusive evidence of a variant TT-neutron spectrum in this E_{c.m.} range. In contrast to earlier available data, this indicates a reaction mechanism that must involve resonances and/or higher angular momenta than L=0. This finding provides an important experimental constraint on theoretical efforts that explore this and complementary six-nucleon systems, such as the solar ^{3}He(^{3}He,2p)α reaction.

3.
Rev Sci Instrum ; 87(3): 033706, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27036783

RESUMO

The Laser Megajoule (LMJ) facility located at CEA/CESTA started to operate in the early 2014 with two quadruplets (20 kJ at 351 nm) focused on target for the first experimental campaign. We present here the first set of gated x-ray imaging (GXI) diagnostics implemented on LMJ since mid-2014. This set consists of two imaging diagnostics with spatial, temporal, and broadband spectral resolution. These diagnostics will give basic measurements, during the entire life of the facility, such as position, structure, and balance of beams, but they will also be used to characterize gas filled target implosion symmetry and timing, to study x-ray radiography and hydrodynamic instabilities. The design requires a vulnerability approach, because components will operate in a harsh environment induced by neutron fluxes, gamma rays, debris, and shrapnel. Grazing incidence x-ray microscopes are fielded as far as possible away from the target to minimize potential damage and signal noise due to these sources. These imaging diagnostics incorporate microscopes with large source-to-optic distance and large size gated microchannel plate detectors. Microscopes include optics with grazing incidence mirrors, pinholes, and refractive lenses. Spatial, temporal, and spectral performances have been measured on x-ray tubes and UV lasers at CEA-DIF and at Physikalisch-Technische Bundesanstalt BESSY II synchrotron prior to be set on LMJ. GXI-1 and GXI-2 designs, metrology, and first experiments on LMJ are presented here.

4.
Rev Sci Instrum ; 83(10): 10E131, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126952

RESUMO

We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (10(9)-10(10) neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 × 10(10). The resolution of this image was 54 µm and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a (60)Co γ-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.

5.
Opt Express ; 20(18): 20028-42, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23037056

RESUMO

CMOS image sensors (CIS) are promising candidates as part of optical imagers for the plasma diagnostics devoted to the study of fusion by inertial confinement. However, the harsh radiative environment of Megajoule Class Lasers threatens the performances of these optical sensors. In this paper, the vulnerability of CIS to the transient and mixed pulsed radiation environment associated with such facilities is investigated during an experiment at the OMEGA facility at the Laboratory for Laser Energetics (LLE), Rochester, NY, USA. The transient and permanent effects of the 14 MeV neutron pulse on CIS are presented. The behavior of the tested CIS shows that active pixel sensors (APS) exhibit a better hardness to this harsh environment than a CCD. A first order extrapolation of the reported results to the higher level of radiation expected for Megajoule Class Laser facilities (Laser Megajoule in France or National Ignition Facility in the USA) shows that temporarily saturated pixels due to transient neutron-induced single event effects will be the major issue for the development of radiation-tolerant plasma diagnostic instruments whereas the permanent degradation of the CIS related to displacement damage or total ionizing dose effects could be reduced by applying well known mitigation techniques.


Assuntos
Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Lasers , Semicondutores , Transdutores , Desenho de Equipamento , Falha de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Rev Sci Instrum ; 83(3): 033502, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22462917

RESUMO

Inertial confinement fusion (ICF) requires a high resolution (~10 µm) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MégaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a (60)Co γ-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 µm were obtained and are compared to x-ray images of comparable resolution.

7.
Rev Sci Instrum ; 81(10): 10D325, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033848

RESUMO

The National Ignition Facility (NIF) successfully completed its first inertial confinement fusion (ICF) campaign in 2009. A neutron time-of-flight (nTOF) system was part of the nuclear diagnostics used in this campaign. The nTOF technique has been used for decades on ICF facilities to infer the ion temperature of hot deuterium (D(2)) and deuterium-tritium (DT) plasmas based on the temporal Doppler broadening of the primary neutron peak. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the yield with high accuracy. The NIF nTOF system is designed to measure neutron yield and ion temperature over 11 orders of magnitude (from 10(8) to 10(19)), neutron bang time in DT implosions between 10(12) and 10(16), and to infer areal density for DT yields above 10(12). During the 2009 campaign, the three most sensitive neutron time-of-flight detectors were installed and used to measure the primary neutron yield and ion temperature from 25 high-convergence implosions using D(2) fuel. The OMEGA yield calibration of these detectors was successfully transferred to the NIF.

8.
Rev Sci Instrum ; 79(10): 10E904, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044559

RESUMO

A high-resolution x-ray imager (HRXI) devoted to laser-plasma experiments combines two state-of-the-art technologies developed in France: a high-resolution x-ray microscope and a high-speed x-ray streak camera. The resulting streaked imager achieves spatial and temporal resolutions of approximately 5 microm and approximately 10 ps, respectively. The HXRI has recorded enhanced spatial and temporal resolution radiographs of indirectly driven targets on OMEGA. This paper describes the main features of the instrument and details the activation process on OMEGA (particularly the alignment). Recent results obtained on joint CEA/LLE radiographic OMEGA experiments will also be presented.

9.
Rev Sci Instrum ; 79(10): 10F301, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044614

RESUMO

The diagnostic designs for the Laser Megajoule (LMJ) will require components to operate in environments far more severe than those encountered in present facilities. This harsh environment will be induced by fluxes of neutrons, gamma rays, energetic ions, electromagnetic radiations, and, in some cases, debris and shrapnel, at levels several orders of magnitude higher than those experienced today on existing facilities. The lessons learned about the vulnerabilities of present diagnostic parts fielded mainly on OMEGA for many years, have been very useful guide for the design of future LMJ diagnostics. The present and future LMJ diagnostic designs including this vulnerability approach and their main mitigation techniques will be presented together with the main characteristics of the LMJ facility that provide for diagnostic protection.

10.
Rev Sci Instrum ; 79(10): 10F304, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044617

RESUMO

The next generation of large scale fusion devices--ITER/LMJ/NIF--will require diagnostic components to operate in environments far more severe than those encountered in present facilities. This harsh environment is the result of high fluxes of neutrons, gamma rays, energetic ions, electromagnetic radiation, and in some cases, debris and shrapnel, at levels several orders of magnitude higher than those experienced in today's devices. The similarities and dissimilarities between environmental effects on diagnostic components for the inertial confinement and magnetic confinement fusion fields have been assessed. Areas in which considerable overlap have been identified are optical transmission materials and optical fibers in particular, neutron detection systems and electronics needs. Although both fields extensively use cables in the hostile environment, there is little overlap because the environments and requirements are very different.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...