Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 373(2033)2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25512586

RESUMO

The free vibrations of a flexible circular cylinder inclined at 80° within a uniform current are investigated by means of direct numerical simulation, at Reynolds number 500 based on the body diameter and inflow velocity. In spite of the large inclination angle, the cylinder exhibits regular in-line and cross-flow vibrations excited by the flow through the lock-in mechanism, i.e. synchronization of body motion and vortex formation. A profound reconfiguration of the wake is observed compared with the stationary body case. The vortex-induced vibrations are found to occur under parallel, but also oblique vortex shedding where the spanwise wavenumbers of the wake and structural response coincide. The shedding angle and frequency increase with the spanwise wavenumber. The cylinder vibrations and fluid forces present a persistent spanwise asymmetry which relates to the asymmetry of the local current relative to the body axis, owing to its in-line bending. In particular, the asymmetrical trend of flow-body energy transfer results in a monotonic orientation of the structural waves. Clockwise and counter-clockwise figure eight orbits of the body alternate along the span, but the latter are found to be more favourable to structure excitation. Additional simulations at normal incidence highlight a dramatic deviation from the independence principle, which states that the system behaviour is essentially driven by the normal component of the inflow velocity.

2.
Phys Rev Lett ; 107(13): 134502, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22026858

RESUMO

We identify a dominant mechanism in the interaction between a slender flexible structure undergoing free vibrations in sheared cross-flow and the vortices forming in its wake: energy is transferred from the fluid to the body under a resonance condition, defined as wake-body frequency synchronization close to a natural frequency of the structure; this condition occurs within a well-defined region of the span, which is dominated by counterclockwise, figure-eight orbits. Clockwise orbits are associated with damping fluid forces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...