Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38979201

RESUMO

Adoptive chimeric antigen receptor T-cell (CAR-T) therapy is transformative and approved for hematologic malignancies, as well being developed for treatment of solid tumors, autoimmune disorders, heart disease and aging. Despite unprecedented clinical outcomes, CAR-T and other engineered cell therapies face a variety of manufacturing and safety challenges. Traditional methods, like lentivirus transduction and electroporation, result in random integration or cause significant cellular damage, which can limit the safety and efficacy of engineered cell therapies, such as CAR-T. We present hydroporation as a gentle and effective alternative for intracellular delivery. Hydroporation resulted in 1.7 to 2x higher CAR-T yields compared to electroporation with superior cell viability and recovery. Hydroporated cells exhibited rapid proliferation, robust target cell lysis and increased pro-inflammatory and regulatory cytokine secretion in addition to improved CAR-T yield by day 5 post-transfection. We demonstrated scaled-up hydroporation can process 5 x 10 8 cells in less than 10 seconds, showcasing the platform as a viable solution for high-yield, precise CAR-T cell manufacturing with the potential for improved therapeutic outcomes.

2.
ACS Appl Polym Mater ; 4(11): 8193-8202, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36405304

RESUMO

Conjugated polymers are organic semiconductors that can be used for fluorescence microscopy of living specimens. Here, we report the encapsulation of the bright-red-emitting conjugated polymer, poly[{9,9-dihexyl-2,7-bis(1-cyanovinylene)fluorenylene}-alt-co-{2,5-bis(N,N'-diphenylamino)-1,4-phenylene}] (CN-FO-DPD), and superparamagnetic iron oxide nanoparticles (SPIONs) within poly(styrene-co-maleic anhydride) (PSMA) micelles. The resulting particles exhibited an emission peak at 657 nm, a fluorescence quantum yield of 21%, an average diameter of 65 nm, and a ζ potential of -30 mV. They are taken up by cells, and we describe their use in fluorescence microscopy of living Hela cells and zebrafish embryos and their associated cytotoxicity in HEK, HeLa, and HCE cells.

3.
ACS Nano ; 15(5): 8790-8802, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33978405

RESUMO

Conjugated polymer nanoparticles (CPNs) based on a common solar cell material (PTB7) have been prepared, and their potential in theranostic applications based on bioimaging and photosensitizing capabilities has been evaluated. The main absorption and emission bands of the prepared CPNs both fell within the NIR-I (650-950 nm) transparency window, allowing facile and efficient implementation of our CPNs as bioimaging agents, as demonstrated in this work for A549 human lung cancer cell cultures. The prepared CPN samples were also shown to produce reactive oxygen species (ROS) upon photoexcitation in the near-infrared or ultraviolet spectral regions, both in aqueous solutions and in HaCaT keratinocyte cell cultures. Importantly, we show that the photosensitizing ability of our CPNs was largely determined by the nature of the stabilizing shell: coating the CPNs with a Pluronic F-127 copolymer led to an improvement of photoinitiated ROS production, while using poly[styrene-co-maleic anhydride] instead completely quenched said process. This work therefore demonstrates that the photosensitizing capability of CPNs can be modulated via an appropriate selection of stabilizing material and highlights the significance of this parameter for the on-demand design of theranostic probes based on CPNs.

4.
ACS Chem Biol ; 16(4): 671-681, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33734687

RESUMO

Recent advances in genome engineering have expanded our capabilities to study proteins in their natural states. In particular, the ease and scalability of knocking-in small peptide tags has enabled high throughput tagging and analysis of endogenous proteins. To improve enrichment capacities and expand the functionality of knock-ins using short tags, we developed the tag-assisted split enzyme complementation (TASEC) approach, which uses two orthogonal small peptide tags and their cognate binders to conditionally drive complementation of a split enzyme upon labeled protein expression. Using this approach, we have engineered and optimized the tag-assisted split HaloTag complementation system (TA-splitHalo) and demonstrated its versatile applications in improving the efficiency of knock-in cell enrichment, detection of protein-protein interaction, and isolation of biallelic gene edited cells through multiplexing.


Assuntos
Enzimas/metabolismo , Proteínas/metabolismo , Citometria de Fluxo , Corantes Fluorescentes/química , Células HEK293 , Humanos , Ligação Proteica
5.
RSC Adv ; 9(65): 37971-37976, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-35541819

RESUMO

New materials that exhibit tuneable optical properties, notable emission across the visible spectrum, are of immense interest to biologists as they present a broad palette of colours from a single imaging agent that can be utilised in biological detection. Such a flexible system, when combined with the advantages of using conjugated polymer nanoparticles in cell imaging results in a widely useful medical diagnostic system. Here, we describe tuneable emission observed through oxidation of a conjugated polymer followed by the formation of nanoparticles and their subsequent use in cell imaging.

6.
Nanoscale Adv ; 1(2): 522-526, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36132241

RESUMO

The synthesis of colloidal semiconductor nanocrystals (NCs) from single-source precursors offers simplified manufacturing processes at the cost of reduced atom efficiency. Self-capping routes have the potential to maximise this efficiency although investigation has so far been limited to organic solvents. Here we present the synthesis of copper sulfide NCs via the decomposition of a copper dithiocarbamate complex in water. Nanocrystalline covellite particles were prepared without the need for additional capping ligand and exhibited a hollow nanosphere morphology. Mass spectrometry of the water-stable NCs indicated the presence of a number of surface ligands, including a small amine fragment of the single-source precursor (SSP) complex. A broad plasmon resonance in the near-infrared (NIR) at 990 nm was also observed and the photothermal effect of this demonstrated. Cytotoxicity experiments indicated cell viability remained above 95% for NC concentrations up to 1 mg mL-1, indicating high biocompatibility.

7.
ACS Appl Mater Interfaces ; 9(34): 28243-28249, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28783304

RESUMO

Post-polymerization modification of the donor-acceptor polymer, poly(9,9-dioctylfluorene-alt-benzothiadiazole), PF8-BT, by electrophilic C-H borylation is a simple method to introduce controllable quantities of near-infrared (near-IR) emitting chromophore units into the backbone of a conjugated polymer. The highly stable borylated unit possesses a significantly lower LUMO energy than the pristine polymer resulting in a reduction in the band gap of the polymer by up to 0.63 eV and a red shift in emission of more than 150 nm. Extensively borylated polymers absorb strongly in the deep red/near-IR and are highly emissive in the near-IR region of the spectrum in solution and solid state. Photoluminescence quantum yield (PLQY) values are extremely high in the solid state for materials with emission maxima ≥ 700 nm with PLQY values of 44% at 700 nm and 11% at 757 nm for PF8-BT with different borylation levels. This high brightness enables efficient solution processed near-IR emitting OLEDs to be fabricated and highly emissive borylated polymer loaded conjugated polymer nanoparticles (CPNPs) to be prepared. The latter are bright, photostable, low toxicity bioimaging agents that in phantom mouse studies show higher signal to background ratios for emission at 820 nm than the ubiquitous near-IR emissive bioimaging agent indocyanine green. This methodology represents a general approach for the post-polymerization functionalization of donor-acceptor polymers to reduce the band gap as confirmed by the C-H borylation of poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2c,2cc-diyl) (PF8TBT) resulting in a red shift in emission of >150 nm, thereby shifting the emission maximum to 810 nm.


Assuntos
Polímeros/química , Animais , Verde de Indocianina , Camundongos , Nanopartículas , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...