Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1419, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301286

RESUMO

Based on new and published cosmic-ray exposure chronologies, we show that glacier extent in the tropical Andes and the north Atlantic regions (TANAR) varied in-phase on millennial timescales during the Holocene, distinct from other regions. Glaciers experienced an early Holocene maximum extent, followed by a strong mid-Holocene retreat and a re-advance in the late Holocene. We further explore the potential forcing of TANAR glacier variations using transient climate simulations. Since the Atlantic Meridional Overturning Circulation (AMOC) evolution is poorly represented in these transient simulations, we develop a semi-empirical model to estimate the "AMOC-corrected" temperature and precipitation footprint at regional scales. We show that variations in the AMOC strength during the Holocene are consistent with the observed glacier changes. Our findings highlight the need to better constrain past AMOC behavior, as it may be an important driver of TANAR glacier variations during the Holocene, superimposed on other forcing mechanisms.


Assuntos
Camada de Gelo , Movimentos da Água , Temperatura
2.
Nature ; 513(7517): 224-8, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25156258

RESUMO

The Younger Dryas stadial, a cold event spanning 12,800 to 11,500 years ago, during the last deglaciation, is thought to coincide with the last major glacial re-advance in the tropical Andes. This interpretation relies mainly on cosmic-ray exposure dating of glacial deposits. Recent studies, however, have established new production rates for cosmogenic (10)Be and (3)He, which make it necessary to update all chronologies in this region and revise our understanding of cryospheric responses to climate variability. Here we present a new (10)Be moraine chronology in Colombia showing that glaciers in the northern tropical Andes expanded to a larger extent during the Antarctic cold reversal (14,500 to 12,900 years ago) than during the Younger Dryas. On the basis of a homogenized chronology of all (10)Be and (3)He moraine ages across the tropical Andes, we show that this behaviour was common to the northern and southern tropical Andes. Transient simulations with a coupled global climate model suggest that the common glacier behaviour was the result of Atlantic meridional overturning circulation variability superimposed on a deglacial increase in the atmospheric carbon dioxide concentration. During the Antarctic cold reversal, glaciers advanced primarily in response to cold sea surface temperatures over much of the Southern Hemisphere. During the Younger Dryas, however, northern tropical Andes glaciers retreated owing to abrupt regional warming in response to reduced precipitation and land-surface feedbacks triggered by a weakened Atlantic meridional overturning circulation. Conversely, glacier retreat during the Younger Dryas in the southern tropical Andes occurred as a result of progressive warming, probably influenced by an increase in atmospheric carbon dioxide. Considered with evidence from mid-latitude Andean glaciers, our results argue for a common glacier response to cold conditions in the Antarctic cold reversal exceeding that of the Younger Dryas.


Assuntos
Temperatura Baixa , Camada de Gelo , Berílio/análise , Clima , Colômbia , Hélio/análise , Isótopos/análise
3.
Anal Bioanal Chem ; 400(9): 3125-32, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21533641

RESUMO

A first international (36)Cl interlaboratory comparison has been initiated. Evaluation of the final results of the eight participating accelerator mass spectrometry (AMS) laboratories on three synthetic AgCl samples with (36)Cl/Cl ratios at the 10(-11), 10(-12), and 10(-13) level shows no difference in the sense of simple statistical significance. However, more detailed statistical analyses demonstrate certain interlaboratory bias and underestimation of uncertainties by some laboratories. Following subsequent remeasurement and reanalysis of the data from some AMS facilities, the round-robin data indicate that (36)Cl/Cl data from two individual AMS laboratories can differ by up to 17%. Thus, the demand for further work on harmonising the (36)Cl-system on a worldwide scale and enlarging the improvement of measurements is obvious.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...