Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 12(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070210

RESUMO

Root-knot nematodes (genus Meloidogyne) are the major contributor to crop losses caused by nematodes. These nematodes secrete effector proteins into the plant, derived from two sets of pharyngeal gland cells, to manipulate host physiology and immunity. Successful completion of the life cycle, involving successive molts from egg to adult, covers morphologically and functionally distinct stages and will require precise control of gene expression, including effector genes. The details of how root-knot nematodes regulate transcription remain sparse. Here, we report a life stage-specific transcriptome of Meloidogyne incognita. Combined with an available annotated genome, we explore the spatio-temporal regulation of gene expression. We reveal gene expression clusters and predicted functions that accompany the major developmental transitions. Focusing on effectors, we identify a putative cis-regulatory motif associated with expression in the dorsal glands, providing an insight into effector regulation. We combine the presence of this motif with several other criteria to predict a novel set of putative dorsal gland effectors. Finally, we show this motif, and thereby its utility, is broadly conserved across the Meloidogyne genus, and we name it Mel-DOG. Taken together, we provide the first genome-wide analysis of spatio-temporal gene expression in a root-knot nematode and identify a new set of candidate effector genes that will guide future functional analyses.


Assuntos
Expressão Gênica/genética , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Regiões Promotoras Genéticas/genética , Tylenchoidea/genética , Animais , Estágios do Ciclo de Vida/genética , Infecções por Secernentea/parasitologia , Transcrição Gênica/genética , Transcriptoma/genética
2.
Sci Rep ; 10(1): 6991, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332904

RESUMO

Meloidogyne incognita is a plant-parasitic root-knot nematode (RKN, PPN) responsible for causing damage to several crops worldwide. In Caenorhabditis elegans, the DAF-16 and SKN-1 transcription factors (TFs) orchestrate aging, longevity, and defense responses to several stresses. Here, we report that MiDaf16-like1 and MiSkn1-like1, which are orthologous to DAF-16 and SKN-1 in C. elegans, and some of their targets, are modulated in M. incognita J2 during oxidative stress or plant parasitism. We used RNAi technology for the stable production of siRNAs in planta to downregulate the MiDaf16-like1 and MiSkn1-like1 genes of M. incognita during host plant parasitism. Arabidopsis thaliana and Nicotiana tabacum overexpressing a hairpin-derived dsRNA targeting these genes individually (single-gene silencing) or simultaneously (double-gene silencing) were generated. T2 plants were challenged with M. incognita and the number of eggs, galls, and J2, and the nematode reproduction factor (NRF) were evaluated. Our data indicate that MiDaf16-like1, MiSkn1-like1 and some genes from their networks are modulated in M. incognita J2 during oxidative stress or plant parasitism. Transgenic A. thaliana and N. tabacum plants with single- or double-gene silencing showed significant reductions in the numbers of eggs, J2, and galls, and in NRF. Additionally, the double-gene silencing plants had the highest resistance level. Gene expression assays confirmed the downregulation of the MiDaf16-like1 and MiSkn1-like1 TFs and defense genes in their networks during nematode parasitism in the transgenic plants. All these findings demonstrate that these two TFs are potential targets for the development of biotechnological tools for nematode control and management in economically important crops.


Assuntos
Biotecnologia/métodos , Tylenchoidea/metabolismo , Tylenchoidea/patogenicidade , Animais , Arabidopsis/parasitologia , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/parasitologia , Interferência de RNA/fisiologia , RNA de Cadeia Dupla/genética , Nicotiana/parasitologia
3.
Environ Microbiol ; 22(5): 1901-1916, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32147875

RESUMO

Aurantiochytrium limacinum (Thraustochytriaceae, class Labyrinthulomycetes) is a marine Stramenopile and a pioneering mangrove decomposer. Its life cycle involves a non-motile stage and zoospore production. We observed that the composition of the medium, the presence of amino acids in particular, affects the release of zoospores. Two opposite conditions were defined, one with a cell population mainly composed of zoospores and another one with almost only non-motile cells. In silico allelic frequency analysis and flow cytometry suggest that zoospores and non-motile cells share the same ploidy level and are diploid. Through an RNA-seq approach, the transcriptional reprogramming accompanying the formation of zoospores was investigated, with a particular focus on their lipid metabolism. Based on a differential expression analysis, zoospores are characterized by high motility, very active signal transduction, an arrest of the cell division, a low amino acid metabolism and low glycolysis. Focusing on lipid metabolism, genes involved in lipase activities and peroxisomal ß-oxidation are upregulated. qRT-PCR of selected lipid genes and lipid analyses during the life span of zoospores confirmed these observations. These results highlight the importance of the lipid dynamics in zoospores and show the metabolic processes required to use these energy-dense molecules as fuel for zoospore survival during their quest of new territories.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Esporos/crescimento & desenvolvimento , Estramenópilas/metabolismo , Aminoácidos/metabolismo , Animais , Divisão Celular/genética , Simulação por Computador , Meios de Cultura/metabolismo , Diploide , Glicólise/genética , Estágios do Ciclo de Vida , Metabolismo dos Lipídeos/genética , Lipídeos/análise , Transdução de Sinais/genética , Estramenópilas/genética , Transcrição Gênica/genética
4.
Prog Lipid Res ; 76: 101007, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31499096

RESUMO

Thraustochytrids are unicellular heterotrophic marine protists of the Stramenopile group, often considered as non-photosynthetic microalgae. They have been isolated from a wide range of habitats including deep sea, but are mostly present in waters rich in sediments and organic materials. They are abundant in mangrove forests where they are major colonizers, feeding on decaying leaves and initiating the mangrove food web. Discovered 80 years ago, they have recently attracted considerable attention due to their biotechnological potential. This interest arises from their fast growth, their specific lipid metabolism and the improvement of the genetic tools and transformation techniques. These organisms are particularly rich in ω3-docosahexaenoic acid (DHA), an 'essential' fatty acid poorly encountered in land plants and animals but required for human health. To produce their DHA, thraustochytrids use a sophisticated system different from the classical fatty acid synthase system. They are also a potential source of squalene and carotenoids. Here we review our current knowledge about the life cycle, ecophysiology, and metabolism of these organisms, with a particular focus on lipid dynamics. We describe the different pathways involved in lipid and fatty acid syntheses, emphasizing their specificity, and we report on the recent efforts aimed to engineer their lipid metabolism.


Assuntos
Lipídeos/química , Estramenópilas/metabolismo , Animais , Metabolismo dos Lipídeos , Estramenópilas/química
5.
Sci Rep ; 9(1): 8080, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147630

RESUMO

Drought episodes decrease plant growth and productivity, which in turn cause high economic losses. Plants naturally sense and respond to water stress by activating specific signalling pathways leading to physiological and developmental adaptations. Genetically engineering genes that belong to these pathways might improve the drought tolerance of plants. The abscisic acid (ABA)-responsive element binding protein 1/ABRE binding factor (AREB1/ABF2) is a key positive regulator of the drought stress response. We investigated whether the CRISPR activation (CRISPRa) system that targets AREB1 might contribute to improve drought stress tolerance in Arabidopsis. Arabidopsis histone acetyltransferase 1 (AtHAT1) promotes gene expression activation by switching chromatin to a relaxed state. Stable transgenic plants expressing chimeric dCas9HAT were first generated. Then, we showed that the CRISPRa dCas9HAT mechanism increased the promoter activity controlling the ß-glucuronidase (GUS) reporter gene. To activate the endogenous promoter of AREB1, the CRISPRa dCas9HAT system was set up, and resultant plants showed a dwarf phenotype. Our qRT-PCR experiments indicated that both AREB1 and RD29A, a gene positively regulated by AREB1, exhibited higher gene expression than the control plants. The plants generated here showed higher chlorophyll content and faster stomatal aperture under water deficit, in addition to a better survival rate after drought stress. Altogether, we report that CRISPRa dCas9HAT is a valuable biotechnological tool to improve drought stress tolerance through the positive regulation of AREB1.


Assuntos
Aclimatação/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteína 9 Associada à CRISPR/genética , Plantas Geneticamente Modificadas/fisiologia , Fatores de Transcrição/genética , Proteínas de Arabidopsis/metabolismo , Sistemas CRISPR-Cas/genética , Secas , Regulação da Expressão Gênica de Plantas/fisiologia , Histona Acetiltransferases , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição/metabolismo
6.
Front Plant Sci ; 9: 904, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997646

RESUMO

The pathogenicity of phytonematodes relies on secreted virulence factors to rewire host cellular pathways for the benefits of the nematode. In the root-knot nematode (RKN) Meloidogyne incognita, thousands of predicted secreted proteins have been identified and are expected to interact with host proteins at different developmental stages of the parasite. Identifying the host targets will provide compelling evidence about the biological significance and molecular function of the predicted proteins. Here, we have focused on the hub protein CSN5, the fifth subunit of the pleiotropic and eukaryotic conserved COP9 signalosome (CSN), which is a regulatory component of the ubiquitin/proteasome system. We used affinity purification-mass spectrometry (AP-MS) to generate the interaction network of CSN5 in M. incognita-infected roots. We identified the complete CSN complex and other known CSN5 interaction partners in addition to unknown plant and M. incognita proteins. Among these, we described M. incognita PASSE-MURAILLE (MiPM), a small pioneer protein predicted to contain a secretory peptide that is up-regulated mostly in the J2 parasitic stage. We confirmed the CSN5-MiPM interaction, which occurs in the nucleus, by bimolecular fluorescence complementation (BiFC). Using MiPM as bait, a GST pull-down assay coupled with MS revealed some common protein partners between CSN5 and MiPM. We further showed by in silico and microscopic analyses that the recombinant purified MiPM protein enters the cells of Arabidopsis root tips in a non-infectious context. In further detail, the supercharged N-terminal tail of MiPM (NTT-MiPM) triggers an unknown host endocytosis pathway to penetrate the cell. The functional meaning of the CSN5-MiPM interaction in the M. incognita parasitism is discussed. Moreover, we propose that the cell-penetrating properties of some M. incognita secreted proteins might be a non-negligible mechanism for cell uptake, especially during the steps preceding the sedentary parasitic phase.

7.
Plant Cell Environ ; 41(9): 2008-2020, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29059477

RESUMO

Tripartite interactions between legumes and their root symbionts (rhizobia and arbuscular mycorrhizal fungi, AMF) are poorly understood, although it is well established that only specific combinations of symbionts lead to optimal plant growth. A classic example in which to investigate such interactions is the Brazilian legume tree Piptadenia gonoacantha (Caesalpinioideae), for which efficient nodulation has been described as dependent on the presence of AMF symbiosis. In this study, we compared the nodulation behaviour of several rhizobial strains with or without AMF inoculation, and performed analyses on nodulation, nodule cytology, N-fixing efficiency, and plant growth response. Nodulation of P. gonoacantha does not rely on the presence of AMF, but mycorrhization was rhizobial strain-dependent, and nodule effectiveness and plant growth were dependent on the presence of specific combinations of rhizobial strains and AMF. The co-occurrence of both symbionts within efficient nodules and the differentiation of bacteroids within nodule cells were also demonstrated. Novel close interactions and interdependency for the establishment and/or functioning of these symbioses were also revealed in Piptadenia, thanks to immunocytochemical analyses. These data are discussed in terms of the evolutionary position of the newly circumscribed mimosoid clade within the Caesalpinioid subfamily and its relative proximity to non-nodulated (but AMF-associated) basal subfamilies.


Assuntos
Fabaceae/fisiologia , Micorrizas/fisiologia , Nodulação/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Biodiversidade , Filogenia , Simbiose , Árvores/fisiologia
8.
FEMS Microbiol Ecol ; 93(4)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334155

RESUMO

Some species of the genus Paraburkholderia that are able to nodulate and fix nitrogen in symbiosis with legumes are called ß-rhizobia and represent a group of ecological and biotechnological importance. We used Mimosa pudica and Phaseolus vulgaris to trap 427 rhizobial isolates from rhizospheric soil of Mimoseae trees in the Brazilian Atlantic Forest. Eighty-four representative strains were selected according to the 16S rRNA haplotypes and taxonomically characterized using a concatenated 16S rRNA-recA phylogeny. Most strains were assembled in the genus Paraburkholderia, including Paraburkholderia sabiae and Pa. nodosa. Mesorhizobium (α-rhizobia) and Cupriavidus (ß-rhizobia) were also isolated, but in smaller proportions. Multilocus sequence analysis and BOX-PCR analyses indicated that six clusters of Paraburkholderia represent potential new species. In the phylogenetic analysis of the nodC gene, the majority of the strains were positioned in the same groups as in the 16S rRNA-recA tree, indicative of stability and vertical inheritance, but we also identified horizontal transfer of nodC in Pa. sabiae. All α- and ß-rhizobial species were trapped by both legumes, although preferences of the host plants for specific rhizobial species have been observed.


Assuntos
Betaproteobacteria/genética , Florestas , Variação Genética , Mimosa/microbiologia , Phaseolus/microbiologia , Filogenia , Brasil , Cupriavidus/classificação , RNA Ribossômico 16S/genética , Rhizobium/genética , Solo , Microbiologia do Solo , Simbiose
9.
Ann Bot ; 119(5): 775-789, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087659

RESUMO

BACKGROUND: Plant-parasitic nematode interactions occur within a vast molecular plant immunity network. Following initial contact with the host plant roots, plant-parasitic nematodes (PPNs) activate basal immune responses. Defence priming involves the release in the apoplast of toxic molecules derived from reactive species or secondary metabolism. In turn, PPNs must overcome the poisonous and stressful environment at the plant-nematode interface. The ability of PPNs to escape this first line of plant immunity is crucial and will determine its virulence. SCOPE: Nematodes trigger crucial regulatory cytoprotective mechanisms, including antioxidant and detoxification pathways. Knowledge of the upstream regulatory components that contribute to both of these pathways in PPNs remains elusive. In this review, we discuss how PPNs probably orchestrate cytoprotection to resist plant immune responses, postulating that it may be derived from ancient molecular mechanisms. The review focuses on two transcription factors, DAF-16 and SKN-1 , which are conserved in the animal kingdom and are central regulators of cell homeostasis and immune function. Both regulate the unfolding protein response and the antioxidant and detoxification pathways. DAF-16 and SKN-1 target a broad spectrum of Caenorhabditis elegans genes coding for numerous protein families present in the secretome of PPNs. Moreover, some regulatory elements of DAF-16 and SKN-1 from C. elegans have already been identified as important genes for PPN infection. CONCLUSION: DAF-16 and SKN-1 genes may play a pivotal role in PPNs during parasitism. In the context of their hub status and mode of regulation, we suggest alternative strategies for control of PPNs through RNAi approaches.


Assuntos
Proteínas de Helminto/genética , Nematoides/fisiologia , Doenças das Plantas/parasitologia , Imunidade Vegetal , Fatores de Transcrição/genética , Animais , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Nematoides/genética , Plantas/parasitologia , Fatores de Transcrição/metabolismo
10.
Int J Syst Evol Microbiol ; 67(2): 432-440, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27902255

RESUMO

During a survey of root-nodulating symbionts of Mimosoid species in the south-east region of Brazil, eight Paraburkholderia isolates were obtained from nodules of the legume species Piptadenia gonoacantha, either from the field or following a soil trapping method with the same plant host. 16S rRNA gene as well as recA and gyrB phylogenetic markers placed these strains in two new clades within the genus Burkholderia sensu lato. DNA-DNA hybridization values and analyses of average nucleotide identities of the whole genome sequence of selected strains in each clade (STM 7183 and STM 7296) showed that the two clades represented novel species of the genus Paraburkholderia. All eight isolates were further characterized using DNA base content determination, chemotaxonomic and biochemical profiling and symbiotic properties, which allowed to distinguish the novel species from known diazotrophic species of the genus Paraburkholderia. Based on genomic and phenotypic data, the names Paraburkholderia piptadeniae sp. nov. with type strain STM 7183T (=DSM 101189T=LMG 29163T) and Paraburkholderia ribeironis sp. nov. with type strain STM 7296T (=DSM 101188T=LMG 29351T) are proposed.


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Brasil , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Genes Bacterianos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
11.
PLoS One ; 8(5): e63478, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691052

RESUMO

Burkholderia legume symbionts (also called α-rhizobia) are ancient in origin and are the main nitrogen-fixing symbionts of species belonging to the large genus Mimosa in Brazil. We investigated the extent of the affinity between Burkholderia and species in the tribe Mimoseae by studying symbionts of the genera Piptadenia (P.), Parapiptadenia (Pp.), Pseudopiptadenia (Ps.), Pityrocarpa (Py.), Anadenanthera (A.) and Microlobius (Mi.), all of which are native to Brazil and are phylogenetically close to Mimosa, and which together with Mimosa comprise the "Piptadenia group". We characterized 196 strains sampled from 18 species from 17 locations in Brazil using two neutral markers and two symbiotic genes in order to assess their species affiliations and the evolution of their symbiosis genes. We found that Burkholderia are common and highly diversified symbionts of species in the Piptadenia group, comprising nine Burkholderia species, of which three are new ones and one was never reported as symbiotic (B. phenoliruptrix). However, α-rhizobia were also detected and were occasionally dominant on a few species. A strong sampling site effect on the rhizobial nature of symbionts was detected, with the symbiont pattern of the same legume species changing drastically from location to location, even switching from ß to α-rhizobia. Coinoculation assays showed a strong affinity of all the Piptadenia group species towards Burkholderia genotypes, with the exception of Mi. foetidus. Phylogenetic analyses of neutral and symbiotic markers showed that symbiosis genes in Burkholderia from the Piptadenia group have evolved mainly through vertical transfer, but also by horizontal transfer in two species.


Assuntos
Burkholderia/isolamento & purificação , Fabaceae/microbiologia , Simbiose , Brasil , Burkholderia/classificação , Filogenia
12.
Plant J ; 74(1): 1-12, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23279638

RESUMO

Effector proteins are key elements in plant-fungal interactions. The rice blast fungus Magnaporthe oryzae secretes numerous effectors that are suspected to be translocated inside plant cells. However, their cellular targets and the mechanisms of translocation are still unknown. Here, we have identified the open reading frame (ORF3) corresponding to the M. oryzae avirulence gene AVR1-CO39 that interacts with the rice resistance gene Pi-CO39 and encodes a small secreted protein without homology to other proteins. We demonstrate that AVR1-CO39 is specifically expressed and secreted at the plant-fungal interface during the biotrophic phase of infection. Live-cell imaging with M. oryzae transformants expressing a translational fusion between AVR1-CO39 and the monomeric red fluorescent protein (mRFP) indicated that AVR1-CO39 is translocated into the cytoplasm of infected rice cells. Transient expression of an AVR1-CO39 isoform without a signal peptide in rice protoplasts triggers a Pi-CO39-specific hypersensitive response, suggesting that recognition of AVR1-CO39 by the Pi-CO39 gene product occurs in the cytoplasm of rice cells. The native AVR1-CO39 protein enters the secretory pathway of rice protoplasts as demonstrated by the ER localization of AVR1-CO39:mRFP:HDEL translational fusions, and is correctly processed as shown by Western blotting. However, this secreted AVR1-CO39 isoform triggers a Pi-CO39-specific hypersensitive response and accumulates inside rice protoplasts as shown by Western blotting and localization of AVR1-CO39:mRFP translational fusions. This indicates that AVR1-CO39 is secreted by rice protoplasts and re-enters into the cytoplasm by unknown mechanisms, suggesting that translocation of AVR1-CO39 into rice cells occurs independently of fungal factors.


Assuntos
Proteínas Fúngicas/metabolismo , Magnaporthe/patogenicidade , Oryza/microbiologia , Doenças das Plantas/microbiologia , Transporte Proteico , Sequência de Aminoácidos , Sequência de Bases , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Magnaporthe/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Sinais Direcionadores de Proteínas , Protoplastos/metabolismo
13.
New Phytol ; 192(1): 140-150, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21679189

RESUMO

• Apart from their antifungal role, plant defensins have recently been shown to be involved in abiotic stress tolerance or in inhibition of root growth when added in plant culture medium. We studied the subcellular localization of these proteins, which may account for these different roles. • Stable and transient expression of AhPDF1.1::GFP (green fluorescent protein) fusion proteins were analysed in yeast and plants. Functional tests established that the GFP tag did not alter the action of the defensin. Subcellular localization of AhPDF1.1 was characterized: by imaging AhPDF1.1::GFP together with organelle markers; and by immunolabelling AhPDF1.1 in Arabidopsis halleri and Arabidopsis thaliana leaves using a polyclonal serum. • All our independent approaches demonstrated that AhPDF1.1 is retained in intracellular compartments on the way to the lytic vacuole, instead of being addressed to the apoplasm. • These findings challenge the commonly accepted idea of secretion of defensins. The subcellular localization highlighted in this study could partly explain the dual role of plant defensins on plant cells and is of major importance to unravel the mechanisms of action of these proteins at the cellular level.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Compartimento Celular , Defensinas/metabolismo , Espaço Intracelular/metabolismo , Folhas de Planta/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Quitosana/farmacologia , Defensinas/química , Proteínas de Fluorescência Verde/metabolismo , Imunoensaio , Espaço Intracelular/efeitos dos fármacos , Dados de Sequência Molecular , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Sinais Direcionadores de Proteínas , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Zinco/toxicidade , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
14.
Mol Plant Pathol ; 10(4): 471-85, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19523101

RESUMO

Several ethylene-response factor (ERF) transcription factors are believed to play a crucial role in the activation of plant defence responses, but little is known about the relationships between the diversity of this family and the functions of groups or individual ERFs in this process. In this study, 200 ERF genes from the unigene cotton database were identified. Conserved amino acid residues and phylogeny reconstruction using the AP2 conserved domain suggest that the classification into 10 major groups used for Arabidopsis and rice is applicable to the cotton ERF family. Based on in silico studies, we predict that group IX ERF genes in cotton are involved in jasmonate (JA), ethylene (ET) and pathogen responses. To test this hypothesis, we analysed the transcript profiles of the group IXa subfamily in the regulation of specific resistance to Xanthomonas campestris pathovar malvacearum. The expression of four members of group IXa was induced on challenge with X. campestris pv. malvacearum. Furthermore, the expression of several ERF genes of group IXa was induced synergistically by JA in combination with ET, suggesting that the encoded ERF proteins may play key roles in the integration of both signals to activate JA- and ET-dependent responses.


Assuntos
Ciclopentanos/farmacologia , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gossypium/microbiologia , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Xanthomonas/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Perfilação da Expressão Gênica , Genes de Plantas , Variação Genética , Gossypium/efeitos dos fármacos , Gossypium/genética , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...