Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2356270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38797998

RESUMO

High-fat diets alter gut barrier integrity, leading to endotoxemia by impacting epithelial functions and inducing endoplasmic reticulum (ER) stress in intestinal secretory goblet cells. Indeed, ER stress, which is an important contributor to many chronic diseases such as obesity and obesity-related disorders, leads to altered synthesis and secretion of mucins that form the protective mucus barrier. In the present study, we investigated the relative contribution of omega-3 polyunsaturated fatty acid (PUFAs)-modified microbiota to alleviating alterations in intestinal mucus layer thickness and preserving gut barrier integrity. Male fat-1 transgenic mice (exhibiting endogenous omega-3 PUFAs tissue enrichment) and wild-type (WT) littermates were fed either an obesogenic high-fat diet (HFD) or a control diet. Unlike WT mice, HFD-fed fat-1 mice were protected against mucus layer alterations as well as an ER stress-mediated decrease in mucin expression. Moreover, cecal microbiota transferred from fat-1 to WT mice prevented changes in the colonic mucus layer mainly through colonic ER stress downregulation. These findings highlight a novel feature of the preventive effects of omega-3 fatty acids against intestinal permeability in obesity-related conditions.


Assuntos
Colo , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Ácidos Graxos Ômega-3 , Microbioma Gastrointestinal , Mucosa Intestinal , Camundongos Transgênicos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Masculino , Ácidos Graxos Ômega-3/metabolismo , Colo/microbiologia , Colo/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Obesidade/metabolismo , Obesidade/microbiologia , Muco/metabolismo , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , Células Caliciformes/metabolismo , Transplante de Microbiota Fecal
2.
Int J Obes (Lond) ; 48(6): 830-840, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38351251

RESUMO

BACKGROUND/OBJECTIVES: Adipose tissue macrophages (ATM) are key actors in the pathophysiology of obesity-related diseases. They have a unique intermediate M2-M1 phenotype which has been linked to endoplasmic reticulum (ER) stress. We previously reported that human M2 macrophages treated with the ER stress inducer thapsigargin switched to a pro-inflammatory phenotype that depended on the stress protein GRP94. In these conditions, GRP94 promoted cathepsin L secretion and was co-secreted with complement C3. As cathepsin L and complement C3 have been reported to play a role in the pathophysiology of obesity, in this work we studied the involvement of GRP94 in the pro-inflammatory phenotype of ATM. METHODS: GRP94, cathepsin L and C3 expression were analyzed in CD206 + ATM from mice, WT or obesity-resistant transgenic fat-1, fed a high-fat diet (HFD) or a standard diet. GRP94 colocalization with cathepsin L and C3 and its effects were analyzed in human primary macrophages using thapsigargin as a control to induce ER stress and palmitic acid (PA) as a driver of metabolic activation. RESULTS: In WT, but not in fat-1 mice, fed a HFD, we observed an increase in crown-like structures consisting of CD206 + pSTAT1+ macrophages showing high expression of GRP94 that colocalized with cathepsin L and C3. In vitro experiments showed that PA favored a M2-M1 switch depending on GRP94. This switch was prevented by omega-3 fatty acids. PA-induced GRP94-cathepsin L colocalization and a decrease in cathepsin L enzymatic activity within the cells (while the enzymatic activity in the extracellular medium was increased). These effects were prevented by the GRP94 inhibitor PU-WS13. CONCLUSIONS: GRP94 is overexpressed in macrophages both in in vivo and in vitro conditions of obesity-associated inflammation and is involved in changing their profile towards a more pro-inflammatory profile. It colocalizes with complement C3 and cathepsin L and modulates cathepsin L activity.


Assuntos
Catepsina L , Estresse do Retículo Endoplasmático , Inflamação , Macrófagos , Obesidade , Animais , Camundongos , Estresse do Retículo Endoplasmático/fisiologia , Obesidade/metabolismo , Macrófagos/metabolismo , Catepsina L/metabolismo , Inflamação/metabolismo , Humanos , Dieta Hiperlipídica , Modelos Animais de Doenças , Tecido Adiposo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...