Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028363

RESUMO

Soft amorphous materials are viscoelastic solids ubiquitously found around us, from clays and cementitious pastes to emulsions and physical gels encountered in food or biomedical engineering. Under an external deformation, these materials undergo a noteworthy transition from a solid to a liquid state that reshapes the material microstructure. This yielding transition was the main theme of a workshop held from January 9 to 13, 2023 at the Lorentz Center in Leiden. The manuscript presented here offers a critical perspective on the subject, synthesizing insights from the various brainstorming sessions and informal discussions that unfolded during this week of vibrant exchange of ideas. The result of these exchanges takes the form of a series of open questions that represent outstanding experimental, numerical, and theoretical challenges to be tackled in the near future.

2.
Soft Matter ; 17(39): 8832-8837, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34546264

RESUMO

A drop of an aqueous suspension of nanoparticles placed on a substrate forms a solid deposit as it dries. For dilute suspensions, particles accumulate within a narrow ring at the drop edge, whereas a uniform coating covering the entire wetted area forms for concentrated suspensions. In between these extremes, we report two additional regimes characterized by non-uniform deposit thicknesses and by distinct crack morphologies. We show that both the deposit shape and the number of cracks are controlled exclusively by the initial particle volume fraction. The different regimes share a common avalanche-like crack propagation dynamics, as a result of the delamination of the deposit from the substrate.

3.
Sci Adv ; 7(28)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34233873

RESUMO

As first described by Leidenfrost, liquid droplets levitate over their own vapor when placed on a sufficiently hot substrate. The Leidenfrost effect not only confers remarkable properties such as mechanical and thermal insulation, zero adhesion, and extreme mobility but also requires a high energetic thermal cost. We describe here a previously unexplored approach using active liquids able to sustain levitation in the absence of any external forcing at ambient temperature. We focus on the particular case of carbonated water placed on a superhydrophobic solid and demonstrate how millimetric fizzy drops self-generate a gas cushion that provides levitation on time scales on the order of a minute. Last, we generalize this new regime to different kinds of chemically reactive droplets able to jump from the Cassie-Baxter state to a levitating regime, paving the way to the levitation of nonvolatile liquids.

4.
ACS Appl Mater Interfaces ; 12(25): 28750-28758, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32515182

RESUMO

Asphaltenes are heavy aromatic components of crude oil. Their complex chemical makeup-an aromatic core surrounded by aliphatic side chains-enables them to adhere to most surfaces. Their buildup in pipes can result in clogging and lead to interruption of production operations and expensive mechanical cleaning. We demonstrate the use of liquid-impregnated surfaces (LIS) to prevent asphaltene deposition and buildup on substrates. Indeed, these surfaces expose a liquid interface to the working fluid, which combines the benefits of a dynamic defect-free surface and tunable interfacial properties. In contrast to bulk additives that are typically mixed into the oil phase, the impregnating liquid also provides the great benefit of protecting the underlying solid surface with a stable and minimal layer of lubricant, thereby reducing costs and eliminating the need for subsequent downstream removal. We first select and confirm the thermodynamic stability of a suitable lubricant and its lack of interaction with asphaltenes. By using a carefully selected system composed of a textured and functionalized solid substrate in conjunction with a fluorinated lubricant, we show that asphaltene adsorption is prevented over long time scales. We further demonstrate the possibility of building such a system with representative industrial materials such as aluminum and expose the resulting substrate to an external shear flow to simulate pipe flow conditions.

5.
Langmuir ; 36(14): 3894-3902, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32090578

RESUMO

Asphaltenes, heavy aromatic components of crude oil, are known to adsorb on surfaces and can lead to pipe clogging or hinder oil recovery. Because of their multicomponent structure, the details of their interactions with surfaces are complex. We investigate the effect of the physicochemical properties of the substrate on the extent and mechanism of this adsorption. Using wetting measurements, we relate the initial kinetics of deposition to the interfacial energy of the surface. We then quantify the long-term adsorption dynamics using a quartz crystal microbalance and ellipsometry. Finally, we investigate the mechanism and morphology of adsorption with force spectroscopy measurements as a function of surface chemistry. We determine different adsorption regimes differing in orientation, packing density, and initial kinetics on different substrate functionalizations. Specifically, we find that alkane substrates delay the initial monolayer formation, fluorinated surfaces exhibit fast adsorption but low bonding strength, and hydroxyl substrates lead to a different adsorption orientation and a high packing density of the asphaltene layer.

6.
Sci Adv ; 5(6): eaaw0304, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31259241

RESUMO

Superhydrophobicity (observed at room temperature) and Leidenfrost phenomenon (observed on very hot solids) are classical examples of nonwetting surfaces. It was found that combining the two effects by heating water-repellent materials leads to a marked yet unexplained decrease of the Leidenfrost temperature of water. We discuss here how heat enhances superhydrophobicity by favoring a "cold Leidenfrost regime" where water adhesion becomes nonmeasurable even at moderate substrate temperature. Heat is found to induce contradictory effects (sticking due to vapor condensation, and lift due to the spreading of vapor patches), which is eventually shown to be controllable by the solid surface texture. The transition to the levitating Leidenfrost regime is observed to be continuous as a function of temperature, contrasting with the transition on common solids.

7.
Sci Rep ; 4: 5280, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24923358

RESUMO

Liquids in the Leidenfrost state were shown by Linke to self-propel if placed on ratchets. The vapour flow below the liquid rectified by the asymmetric teeth entrains levitating drops by viscosity. This effect is observed above the Leidenfrost temperature of the substrate, typically 200°C for water. Here we show that coating ratchets with super-hydrophobic microtextures extends quick self-propulsion down to a substrate temperature of 100°C, which exploits the persistence of Leidenfrost state with such coatings. Surprisingly, propulsion is even observed below 100°C, implying that levitation is not necessary to induce the motion. Finally, we model the drop velocity in this novel "cold regime" of self-propulsion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...