Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38932071

RESUMO

A novel approach was proposed, utilizing an electrical field and X-ray irradiation to oxidize elemental mercury (Hg0) and encapsulate it within a nanofibrous mat made of Polyamide 6/Chitosan. The X-rays contributed significantly to the conversion of Hg0 into Hg+ by producing electrons through the photoionization of gas molecules. The positive and negative pole electrodes generated an electric field that exerted a magnetic force, resulting in the redirection of oxidized elemental mercury towards the negative pole electrode, which was coupled with a Polyamide 6/Chitosan nanofiber mat. The evaluation of the Polyamide 6/Chitosan nanofibers exposed to oxidized mercury showed that the mercury, found in the steam of a specially designed filtration device, was captured in two different forms. Firstly, it was chemically bonded with concentrations ranging from 0.2 to 10 ng of Hg in total. Secondly, it was retained on the surface of the Polyamide 6/Chitosan nanofibers with a concentration of 10 microg/m3 of Hg per minute. Nevertheless, a concentration of 10 microg/m3 of mercury is considered significant, given that the emission levels of mercury from each coal power plant typically vary from approximately 4.72 to 44.07 microg/m3. Thus, this research presents a viable approach to reducing mercury emissions from coal-fired power plants, which could result in lower operational expenses and less secondary environmental effects.

2.
Small ; 20(29): e2311250, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431938

RESUMO

Ultrafast high-capacity lithium-ion batteries are extremely desirable for portable electronic devices, where Si is the most promising alternative to the conventional graphite anode due to its very high theoretical capacity. However, the low electronic conductivity and poor Li-diffusivity limit its rate capability. Moreover, high volume expansion/contraction upon Li-intake/uptake causes severe pulverization of the electrode, leading to drastic capacity fading. Here, interface and morphology-engineered amorphous Si matrix is being reported utilizing a few-layer vertical graphene (VG) buffer layer to retain high capacity at both slow and fast (dis)charging rates. The flexible mechanical support of VG due to the van-der-Waals interaction between the graphene layers, the weak adhesion between Si and graphene, and the highly porous geometry mitigated stress, while the three-dimensional mass loading enhanced specific capacity. Additionally, the high electronic conductivity of VG boosted rate-capability, resulting in a reversible gravimetric capacity of ≈1270 mAh g-1 (areal capacity of ≈37 µAh cm-2) even after 100 cycles at an ultrafast cycling rate of 20C, which provides a fascinating way for conductivity and stress management to obtain high-performance storage devices.

3.
J Phys Chem Lett ; 13(2): 642-648, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35020405

RESUMO

It is well-known that structural defects play a decisive role in electrochemical behavior of atomically thin materials, where all the defects are directly accessible by the electrolyte. However, the vast majority of experimental techniques do not allow disentanglement of the processes at the edges/defects from those at the intact basal plane. Therefore, to address this issue, we introduce a localized spectroelectrochemical method featuring a microdroplet electrochemical cell with simultaneous Raman spectroscopy monitoring. The electrochemical and spectral responses of the basal planes of monolayer graphene samples with varying levels of disorder were compared. Two contributions, stemming from the intact and defective areas on the surface, respectively, were discovered both in the Raman G band shifts and cyclic voltammetry using the hexaammineruthenium complex. Consequently, two independent electron transfer processes of slower and faster rates coexist in one sample, but they are restricted to the defect-free and defect-rich areas, respectively.

4.
ACS Appl Mater Interfaces ; 13(29): 34686-34695, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34270890

RESUMO

Nanocomposites of graphene materials and conducting polymers have been extensively studied as promising materials for electrodes of supercapacitors. Here, we present a graphene/polyaniline heterostructure consisting of a CVD-graphene and polyaniline monolayer and its electrochemical operation in a supercapacitor. The synthesis employs functionalization of graphene by p-phenylene sulfonic groups and oxidative polymerization of anilinium by ammonium persulfate under reaction conditions, providing no bulk polyaniline. Scanning electron microscopy, atomic force microscopy, and Raman spectroscopy showed the selective formation of polyaniline on the graphene. In situ Raman spectroelectrochemistry and cyclic voltammetry (both in a microdroplet setup) confirm the reversibility of polyaniline redox transitions and graphene electrochemical doping. After an increase within the initial 200 cycles due to the formation of benzoquinone-hydroquinone defects in polyaniline, the specific areal capacitance remained for 2400 cycles with ±1% retention at 21.2 µF cm-2, one order of magnitude higher than the capacitance of pristine graphene.

5.
Nanomaterials (Basel) ; 11(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064622

RESUMO

Systematic in situ Raman microdroplet spectroelectrochemical (Raman-µSEC) characterization of copper (I) thiocyanate (CuSCN) prepared using electrodeposition from aqueous solution on various substrates (carbon-based, F-doped SnO2) is presented. CuSCN is a promising solid p-type inorganic semiconductor used in perovskite solar cells as a hole-transporting material. SEM characterization reveals that the CuSCN layers are homogenous with a thickness of ca. 550 nm. Raman spectra of dry CuSCN layers show that the SCN- ion is predominantly bonded in the thiocyanate resonant form to copper through its S-end (Cu-S-C≡N). The double-layer capacitance of the CuSCN layers ranges from 0.3 mF/cm2 on the boron-doped diamond to 0.8 mF/cm2 on a glass-like carbon. In situ Raman-µSEC shows that, independently of the substrate type, all Raman vibrations from CuSCN and the substrate completely vanish in the potential range from 0 to -0.3 V vs. Ag/AgCl, caused by the formation of a passivation layer. At positive potentials (+0.5 V vs. Ag/AgCl), the bands corresponding to the CuSCN vibrations change their intensities compared to those in the as-prepared, dry layers. The changes concern mainly the Cu-SCN form, showing the dependence of the related vibrations on the substrate type and thus on the local environment modifying the delocalization on the Cu-S bond.

6.
ACS Omega ; 6(22): 14447-14457, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34124467

RESUMO

Examination of thermal decomposition of street samples of cocaine and methamphetamine shows that typical products detected in previous studies are accompanied by a wide palette of simple volatile compounds easily detectable by spectral techniques. These molecules increase smoke toxicity and their spectral detection can be potentially used for identification of drug samples by well-controlled laboratory thermolysis in temperature progression. In our study, street samples of cocaine and methamphetamine have been thermolyzed under vacuum over the temperature range of 350-650 °C. The volatile products (CO, HCN, CH4, C2H4, etc.) have been monitored by high-resolution Fourier-transform infrared (FTIR) spectrometry in this temperature range. The decomposition mechanism has been additionally examined theoretically by quantum-chemical calculations for the highest temperature achieved experimentally in our study and beyond. Prior to analysis, the street samples have also been characterized by FTIR, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and melting point determination.

7.
Nanomaterials (Basel) ; 11(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672643

RESUMO

This paper evaluates the influence of the morphology, surface area, and surface modification of carbonaceous additives on the performance of the corresponding cathode in a lithium-sulfur battery. The structure of sulfur composite cathodes with mesoporous carbon, activated carbon, and electrochemical carbon is studied by X-ray diffraction, nitrogen adsorption measurements, and Raman spectroscopy. The sulfur cathode containing electrochemical carbon with the specific surface area of 1606.6 m2 g-1 exhibits the best electrochemical performance and provides a charge capacity of almost 650 mAh g-1 in cyclic voltammetry at a 0.1 mV s-1 scan rate and up to 1300 mAh g-1 in galvanostatic chronopotentiometry at a 0.1 C rate. This excellent electrochemical behavior is ascribed to the high dispersity of electrochemical carbon, enabling a perfect encapsulation of sulfur. The surface modification of carbonaceous additives by TiO2 has a positive effect on the electrochemical performance of sulfur composites with mesoporous and activated carbons, but it causes a loss of dispersity and a consequent decrease of the charge capacity of the sulfur composite with electrochemical carbon. The composite of sulfur with TiO2-modified activated carbon exhibited the charge capacity of 393 mAh g-1 in cyclic voltammetry and up to 493 mAh g-1 in galvanostatic chronopotentiometry. The presence of an additional Sigracell carbon felt interlayer further improves the electrochemical performance of cells with activated carbon, electrochemical carbon, and nanocrystalline TiO2-modified activated carbon. This positive effect is most pronounced in the case of activated carbon modified by nanocrystalline TiO2. However, it is not boosted by additional coverage by TiO2 or SnO2, which is probably due to the blocking of pores.

8.
J Phys Chem Lett ; 11(15): 6112-6118, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32633525

RESUMO

Gold-mediated exfoliation of MoS2 has recently attracted considerable interest. The strong interaction between MoS2 and Au facilitates preferential production of centimeter-sized monolayer MoS2 with near-unity yield and provides a heterostructure system noteworthy from a fundamental standpoint. However, little is known about the detailed nature of the MoS2-Au interaction and its evolution with the MoS2 thickness. Here, we identify the specific vibrational and binding energy fingerprints of this interaction using Raman and X-ray photoelectron spectroscopy, which indicate substantial strain and charge doping in monolayer MoS2. Tip-enhanced Raman spectroscopy reveals heterogeneity of the MoS2-Au interaction at the nanoscale, reflecting the spatial nonconformity between the two materials. Micro-Raman spectroscopy shows that this interaction is strongly affected by the roughness and cleanliness of the underlying Au. Our results elucidate the nature of the MoS2-Au interaction and guide strain and charge doping engineering of MoS2.

9.
Nanomaterials (Basel) ; 10(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213885

RESUMO

The heterostructures of two-dimensional (2D) and three-dimensional (3D) materials represent one of the focal points of current nanotechnology research and development. From an application perspective, the possibility of a direct integration of active 2D layers with exceptional optoelectronic and mechanical properties into the existing semiconductor manufacturing processes is extremely appealing. However, for this purpose, 2D materials should ideally be grown directly on 3D substrates to avoid the transferring step, which induces damage and contamination of the 2D layer. Alternatively, when such an approach is difficult-as is the case of graphene on noncatalytic substrates such as Si-inverted structures can be created, where the 3D material is deposited onto the 2D substrate. In the present work, we investigated the possibility of using plasma-enhanced chemical vapor deposition (PECVD) to deposit amorphous hydrogenated Si (a-Si:H) onto graphene resting on a catalytic copper foil. The resulting stacks created at different Si deposition temperatures were investigated by the combination of Raman spectroscopy (to quantify the damage and to estimate the change in resistivity of graphene), temperature-dependent dark conductivity, and constant photocurrent measurements (to monitor the changes in the electronic properties of a-Si:H). The results indicate that the optimum is 100 C deposition temperature, where the graphene still retains most of its properties and the a-Si:H layer presents high-quality, device-ready characteristics.

10.
Sci Rep ; 9(1): 9972, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292481

RESUMO

Topographic corrugations, such as wrinkles, are known to introduce diverse physical phenomena that can significantly modify the electrical, optical and chemical properties of two-dimensional materials. This range of assets can be expanded even further when the crystal lattices of the walls of the wrinkle are aligned and form a superlattice, thereby creating a high aspect ratio analogue of a twisted bilayer or multilayer - the so-called twisted wrinkle. Here we present an experimental proof that such twisted wrinkles exist in graphene monolayers on the scale of several micrometres. Combining atomic force microscopy and Raman spectral mapping using a wide range of visible excitation energies, we show that the wrinkles are extremely narrow and their Raman spectra exhibit all the characteristic features of twisted bilayer or multilayer graphene. In light of a recent breakthrough - the superconductivity of a magic-angle graphene bilayer, the collapsed wrinkles represent naturally occurring systems with tuneable collective regimes.

11.
Materials (Basel) ; 12(4)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769806

RESUMO

We investigated the use of a supported silicalite-1 film (SF) as a promising coating for metallic materials used in the fabrication of prostheses. The role of carbonaceous residua present on high-temperature calcined-SF in generating singlet oxygen for future use as a sterilization method has also been addressed, and the potential genotoxicity of these residua in osteoblast-like cells has been investigated. Calcination of as-synthesized SF induced the appearance of a rather complicated mixture of aliphatic and aromatic species on its outer surface. A series of variously volatile polycyclic aromatic hydrocarbons (PAH), including naphthalene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene, were identified in micromole concentrations. Irradiation of these PAHs on calcined-SF immersed in air-saturated chloroform led to the formation of very low concentrations of singlet oxygen. However, an increased level of DNA damage was observed on calcined-SF by immunofluorescence staining of phosphorylated histone H2AX analyzed by flow cytometry.

12.
Sci Rep ; 7(1): 10003, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855558

RESUMO

We present an approach that allows for the preparation of well-defined large arrays of graphene wrinkles with predictable geometry. Chemical vapor deposition grown graphene transferred onto hexagonal pillar arrays of SiO2 with sufficiently small interpillar distance forms a complex network of two main types of wrinkle arrangements. The first type is composed of arrays of aligned equidistantly separated parallel wrinkles propagating over large distances, and originates from line interfaces in the graphene, such as thin, long wrinkles and graphene grain boundaries. The second type of wrinkle arrangement is composed of non-aligned short wrinkles, formed in areas without line interfaces. Besides the presented hybrid graphene topography with distinct wrinkle geometries induced by the pre-patterned substrate, the graphene layers are suspended and self-supporting, exhibiting large surface area and negligible doping effects from the substrate. All these properties make this wrinkled graphene a promising candidate for a material with enhanced chemical reactivity useful in nanoelectronic applications.

13.
Mater Sci Eng C Mater Biol Appl ; 76: 775-781, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482589

RESUMO

This paper investigates the interaction of human osteoblast-like Saos-2 cells with stainless steel covered by a film of densely inter-grown silicalite-1 crystals with defined outer and inner surfaces. The chemical composition of this film, labeled as SF(RT), was tuned by heat treatment at 300°C and 500°C (labeled as SF(300) and SF(500), respectively) and characterized by X-ray photoelectron spectroscopy (XPS), water drop contact angle (WCA) measurements and scanning electron microscopy (SEM). The number, the spreading area and the activity of alkaline phosphatase of human osteoblast-like Saos-2 cells in cultures on the silicalite-1 film were affected by the chemical composition of its outer surface and by its micro-porous structure. The number and the spreading area of the adhered osteoblast-like cells on day 1 was highest on the surface of SF(RT) relative to their adhesion and spreading on a glass cover slip due to the SF(RT) topology. However, SF(300) markedly supported cell growth during days 3 and 7 after seeding.


Assuntos
Osteoblastos , Adesão Celular , Linhagem Celular , Humanos , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Dióxido de Silício , Aço Inoxidável , Propriedades de Superfície
14.
Nano Lett ; 12(2): 687-93, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22165946

RESUMO

We present the first Raman spectroscopic study of Bernal bilayer graphene flakes under uniaxial tension. Apart from a purely mechanical behavior in flake regions where both layers are strained evenly, certain effects stem from inhomogeneous stress distribution across the layers. These phenomena such as the removal of inversion symmetry in bilayer graphene may have important implications in the band gap engineering, providing an alternative route to induce the formation of a band gap.


Assuntos
Grafite/química , Membranas Artificiais , Fônons , Estrutura Molecular , Polímeros/química , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...