Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2321581121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625944

RESUMO

Pipe flows are commonly found in nature and industry as an effective mean of transporting fluids. They are primarily characterized by their resistance law, which relates the mean flow rate to the driving pressure gradient. Since Poiseuille and Hagen, various flow regimes and fluid rheologies have been investigated, but the behavior of shear-thickening suspensions, which jam above a critical shear stress, remains poorly understood despite important applications (e.g., concrete or food processing). In this study, we build on recent advances in the physics of shear-thickening suspensions to address their flow through pipes and establish their resistance law. We find that for discontinuously shear-thickening suspensions (large particule volume fractions), the flow rate saturates at high driving stress. Local pressure and velocity measurements reveal that this saturation stems from the emergence of a frictional soliton: a unique, localized, superdissipative, and backpropagating flow structure coexisting with the laminar frictionless flow phase observed at low driving stress. We characterize the remarkably steep effective rheology of the frictional soliton and show that it sets the resistance law at the whole pipe scale. These findings offer an unusual perspective on low-Reynolds suspension flows through pipes, intriguingly reminiscent of the transition to turbulence for simple fluids. They also provide a predictive law for the transport of such suspensions in pipe systems, with implications for a wide range of applications.

2.
Int J Biol Macromol ; 261(Pt 2): 129814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286382

RESUMO

Modification of lignin plays a crucial role in extending its applications. While chemical functionalization has been extensively applied, exploring the enzyme-catalyzed approach for grafting phenolic molecules presents a promising avenue. Herein, we investigate the controlled laccase-mediated grafting of vanillin onto lignosulfonates (LS) as a sustainable approach to introduce aldehydes into LS, paving the way for further (bio)chemical functionalizations (e.g., reductive amination and Knoevenagel-Doebner condensations). The resulting vanillin-grafted LS is comprehensively characterized (HPLC, SEC, Pyrolysis-GC/MS, FTIR). The study reveals four key steps in the grafting process: (i) vanillin acts as a mediator, generating the phenoxyl radical that initiates LS oxidation, (ii) the oxidation leads to depolymerization of LS, resulting in a decrease in molecular weight, (iii) rearrangement in the vanillin-grafted LS, evidenced by the replacement of labile bonds by stronger 5-5 bonds that resist to pyrolysis, and (iv) if the reaction is prolonged after complete consumption of vanillin, condensation of the vanillin-grafted LS occurs, leading to a significant increase in molecular weight. This study provides valuable insights on the behavior of vanillin and LS throughout the process and allows to identify the optimal reaction conditions, thereby enhancing the production of vanillin-grafted LS for its subsequent functionalization.


Assuntos
Aldeídos , Benzaldeídos , Lignina/análogos & derivados , Benzaldeídos/química , Lignina/química
3.
J Colloid Interface Sci ; 437: 227-234, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25313488

RESUMO

This study deals with the adsorption of PolyCarboxylate Poly(ethylene glycol) esters (PCP) superplasticizers on Na-, Mg- and Ca-saturated Montmorillonite (Mmt) clays. The interactions have been examined through different experimental methods: adsorption isotherms, zeta potential measurements and sedimentation experiments. It was found that PCP adsorption depends both on the architecture of PCP molecules and the nature of cation located on the interlayer exchange sites of the Montmorillonite. Whatever the PCP, a larger amount was adsorbed on Na-Mont than on Mg-Mont or Ca-Mont. This indicates the occurrence of two adsorption mechanisms: (i) a superficial adsorption via electrostatic interactions between the carboxylate groups of PCP and positively charged sites on clay surfaces, (ii) intercalation of ether units of the PCP grafts in the interlayer space by displacement of water molecules coordinated to the exchangeable cations. Furthermore, despite the weak negative values of the zeta potential, the addition of PCP promotes the stability of the suspensions which is attributed to steric repulsion acting between particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...