Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36991909

RESUMO

Three-dimensional (3D) real-time object detection and tracking is an important task in the case of autonomous vehicles and road and railway smart mobility, in order to allow them to analyze their environment for navigation and obstacle avoidance purposes. In this paper, we improve the efficiency of 3D monocular object detection by using dataset combination and knowledge distillation, and by creating a lightweight model. Firstly, we combine real and synthetic datasets to increase the diversity and richness of the training data. Then, we use knowledge distillation to transfer the knowledge from a large, pre-trained model to a smaller, lightweight model. Finally, we create a lightweight model by selecting the combinations of width, depth & resolution in order to reach a target complexity and computation time. Our experiments showed that using each method improves either the accuracy or the efficiency of our model with no significant drawbacks. Using all these approaches is especially useful for resource-constrained environments, such as self-driving cars and railway systems.

2.
Sensors (Basel) ; 22(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35632331

RESUMO

A robust visual understanding of complex urban environments using passive optical sensors is an onerous and essential task for autonomous navigation. The problem is heavily characterized by the quality of the available dataset and the number of instances it includes. Regardless of the benchmark results of perception algorithms, a model would only be reliable and capable of enhanced decision making if the dataset covers the exact domain of the end-use case. For this purpose, in order to improve the level of instances in datasets used for the training and validation of Autonomous Vehicles (AV), Advanced Driver Assistance Systems (ADAS), and autonomous driving, and to reduce the void due to the no-existence of any datasets in the context of railway smart mobility, we introduce our multimodal hybrid dataset called ESRORAD. ESRORAD is comprised of 34 videos, 2.7 k virtual images, and 100 k real images for both road and railway scenes collected in two Normandy towns, Rouen and Le Havre. All the images are annotated with 3D bounding boxes showing at least three different classes of persons, cars, and bicycles. Crucially, our dataset is the first of its kind with uncompromised efforts on being the best in terms of large volume, abundance in annotation, and diversity in scenes. Our escorting study provides an in-depth analysis of the dataset's characteristics as well as a performance evaluation with various state-of-the-art models trained under other popular datasets, namely, KITTI and NUScenes. Some examples of image annotations and the prediction results of our 3D object detection lightweight algorithms are available in ESRORAD dataset. Finally, the dataset is available online. This repository consists of 52 datasets with their respective annotations performed.


Assuntos
Algoritmos , Benchmarking
3.
J Imaging ; 7(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34460781

RESUMO

For smart mobility, autonomous vehicles, and advanced driver-assistance systems (ADASs), perception of the environment is an important task in scene analysis and understanding. Better perception of the environment allows for enhanced decision making, which, in turn, enables very high-precision actions. To this end, we introduce in this work a new real-time deep learning approach for 3D multi-object detection for smart mobility not only on roads, but also on railways. To obtain the 3D bounding boxes of the objects, we modified a proven real-time 2D detector, YOLOv3, to predict 3D object localization, object dimensions, and object orientation. Our method has been evaluated on KITTI's road dataset as well as on our own hybrid virtual road/rail dataset acquired from the video game Grand Theft Auto (GTA) V. The evaluation of our method on these two datasets shows good accuracy, but more importantly that it can be used in real-time conditions, in road and rail traffic environments. Through our experimental results, we also show the importance of the accuracy of prediction of the regions of interest (RoIs) used in the estimation of 3D bounding box parameters.

4.
Sensors (Basel) ; 20(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806669

RESUMO

Improving performance and safety conditions in industrial sites remains a key objective for most companies. Currently, the main goal is to be able to dynamically locate both people and goods on the site. Security and access regulation to restricted areas are often ensured by doors or badge barriers and those have several issues when faced with people being in places they are not supposed to be in or even tools of objects being used incorrectly. In addition to this, a growing use of new devices requires precise information about their location in the environment such as mobile robots or drones. Therefore, it is becoming essential to have the tools to dynamically manage these flows of people and goods. Ultra-wide-band and motion capture solutions will be used to quickly identify people who may be in unauthorized areas or performing tasks which they have been uninstructed to do. In addition to the dynamic tracking of people, this also overcomes some issues associated with moving objects or tools around the production floor. We offer a new set of data that provides precise information on worker movement. This dataset can be used to develop new metrics regarding worker efficiency and safety.


Assuntos
Meio Ambiente , Movimento (Física) , Movimento , Conjuntos de Dados como Assunto , Humanos
5.
Sensors (Basel) ; 20(2)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963641

RESUMO

In core computer vision tasks, we have witnessed significant advances in object detection, localisation and tracking. However, there are currently no methods to detect, localize and track objects in road environments, and taking into account real-time constraints. In this paper, our objective is to develop a deep learning multi object detection and tracking technique applied to road smart mobility. Firstly, we propose an effective detector-based on YOLOv3 which we adapt to our context. Subsequently, to localize successfully the detected objects, we put forward an adaptive method aiming to extract 3D information, i.e., depth maps. To do so, a comparative study is carried out taking into account two approaches: Monodepth2 for monocular vision and MADNEt for stereoscopic vision. These approaches are then evaluated over datasets containing depth information in order to discern the best solution that performs better in real-time conditions. Object tracking is necessary in order to mitigate the risks of collisions. Unlike traditional tracking approaches which require target initialization beforehand, our approach consists of using information from object detection and distance estimation to initialize targets and to track them later. Expressly, we propose here to improve SORT approach for 3D object tracking. We introduce an extended Kalman filter to better estimate the position of objects. Extensive experiments carried out on KITTI dataset prove that our proposal outperforms state-of-the-art approches.

6.
Sensors (Basel) ; 18(4)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565310

RESUMO

In this paper, we address the problem of vehicle localization in urban environments. We rely on visual odometry, calculating the incremental motion, to track the position of the vehicle and on place recognition to correct the accumulated drift of visual odometry, whenever a location is recognized. The algorithm used as a place recognition module is SeqSLAM, addressing challenging environments and achieving quite remarkable results. Specifically, we perform the long-term navigation of a vehicle based on the fusion of visual odometry and SeqSLAM. The template library for this latter is created online using navigation information from the visual odometry module. That is, when a location is recognized, the corresponding information is used as an observation of the filter. The fusion is done using the EKF and the UKF, the well-known nonlinear state estimation methods, to assess the superior alternative. The algorithm is evaluated using the KITTI dataset and the results show the reduction of the navigation errors by loop-closure detection. The overall position error of visual odometery with SeqSLAM is 0.22% of the trajectory, which is much smaller than the navigation errors of visual odometery alone 0.45%. In addition, despite the superiority of the UKF in a variety of estimation problems, our results indicate that the UKF performs as efficiently as the EKF at the expense of an additional computational overhead. This leads to the conclusion that the EKF is a better choice for fusing visual odometry and SeqSlam in a long-term navigation context.

7.
Sensors (Basel) ; 17(7)2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28686213

RESUMO

Motion capture setups are used in numerous fields. Studies based on motion capture data can be found in biomechanical, sport or animal science. Clinical science studies include gait analysis as well as balance, posture and motor control. Robotic applications encompass object tracking. Today's life applications includes entertainment or augmented reality. Still, few studies investigate the positioning performance of motion capture setups. In this paper, we study the positioning performance of one player in the optoelectronic motion capture based on markers: Vicon system. Our protocol includes evaluations of static and dynamic performances. Mean error as well as positioning variabilities are studied with calibrated ground truth setups that are not based on other motion capture modalities. We introduce a new setup that enables directly estimating the absolute positioning accuracy for dynamic experiments contrary to state-of-the art works that rely on inter-marker distances. The system performs well on static experiments with a mean absolute error of 0.15 mm and a variability lower than 0.025 mm. Our dynamic experiments were carried out at speeds found in real applications. Our work suggests that the system error is less than 2 mm. We also found that marker size and Vicon sampling rate must be carefully chosen with respect to the speed encountered in the application in order to reach optimal positioning performance that can go to 0.3 mm for our dynamic study.

8.
Sensors (Basel) ; 17(5)2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28531101

RESUMO

Long-term place recognition in outdoor environments remains a challenge due to high appearance changes in the environment. The problem becomes even more difficult when the matching between two scenes has to be made with information coming from different visual sources, particularly with different spectral ranges. For instance, an infrared camera is helpful for night vision in combination with a visible camera. In this paper, we emphasize our work on testing usual feature point extractors under both constraints: repeatability across spectral ranges and long-term appearance. We develop a new feature extraction method dedicated to improve the repeatability across spectral ranges. We conduct an evaluation of feature robustness on long-term datasets coming from different imaging sources (optics, sensors size and spectral ranges) with a Bag-of-Words approach. The tests we perform demonstrate that our method brings a significant improvement on the image retrieval issue in a visual place recognition context, particularly when there is a need to associate images from various spectral ranges such as infrared and visible: we have evaluated our approach using visible, Near InfraRed (NIR), Short Wavelength InfraRed (SWIR) and Long Wavelength InfraRed (LWIR).

9.
IEEE Trans Pattern Anal Mach Intell ; 39(2): 327-341, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27019476

RESUMO

In this paper, we explore the different minimal solutions for egomotion estimation of a camera based on homography knowing the gravity vector between calibrated images. These solutions depend on the prior knowledge about the reference plane used by the homography. We then demonstrate that the number of matched points can vary from two to three and that a direct closed-form solution or a Gröbner basis based solution can be derived according to this plane. Many experimental results on synthetic and real sequences in indoor and outdoor environments show the efficiency and the robustness of our approach compared to standard methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA