Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol Regul ; 91: 100992, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37793962

RESUMO

Blood platelets are produced by megakaryocytes through a complex program of differentiation and play a critical role in hemostasis and thrombosis. These anucleate cells are the target of antithrombotic drugs that prevent them from clumping in cardiovascular disease conditions. Platelets also significantly contribute to various aspects of physiopathology, including interorgan communications, healing, inflammation, and thromboinflammation. Their production and activation are strictly regulated by highly elaborated mechanisms. Among them, those involving inositol lipids have drawn the attention of researchers. Phosphoinositides represent the seven combinatorially phosphorylated forms of the inositol head group of inositol lipids. They play a crucial role in regulating intracellular mechanisms, such as signal transduction, actin cytoskeleton rearrangements, and membrane trafficking, either by generating second messengers or by directly binding to specific domains of effector proteins. In this review, we will explore how phosphoinositides are implicated in controlling platelet production by megakaryocytes and in platelet activation processes. We will also discuss the diversity of phosphoinositides in platelets, their role in granule biogenesis and maintenance, as well as in integrin signaling. Finally, we will address the discovery of a novel pool of phosphatidylinositol 3-monophosphate in the outerleaflet of the plasma membrane of human and mouse platelets.


Assuntos
Plaquetas , Trombose , Animais , Camundongos , Humanos , Plaquetas/patologia , Fosfatidilinositóis/metabolismo , Inflamação , Trombose/metabolismo , Inositol/metabolismo
2.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37569899

RESUMO

Long COVID-19 syndrome appears after Severe Acute Respiratory Syndrome-Corona Virus (SARS-CoV-2) infection with acute damage to microcapillaries, microthrombi, and endothelialitis. However, the mechanisms involved in these processes remain to be elucidated. All blood vessels are lined with a monolayer of endothelial cells called vascular endothelium, which provides a the major function is to prevent coagulation. A component of endothelial cell junctions is VE-cadherin, which is responsible for maintaining the integrity of the vessels through homophilic interactions of its Ca++-dependent adhesive extracellular domain. Here we provide the first evidence that VE-cadherin is a target in vitro for ACE2 cleavage because its extracellular domain (hrVE-ED) contains two amino acid sequences for ACE2 substrate recognition at the positions 256P-F257 and 321PMKP-325L. Indeed, incubation of hrVE-ED with the active ectopeptidase hrACE2 for 16 hrs in the presence of 10 µM ZnCl2 showed a dose-dependent (from 0.2 ng/µL to 2 ng/µL) decrease of the VE-cadherin immunoreactive band. In vivo, in the blood from patients having severe COVID-19 we detected a circulating form of ACE2 with an apparent molecular mass of 70 kDa, which was barely detectable in patients with mild COVID-19. Of importance, in the patients with severe COVID-19 disease, the presence of three soluble fragments of VE-cadherin (70, 62, 54 kDa) were detected using the antiEC1 antibody while only the 54 kDa fragment was present in patients with mild disease. Altogether, these data clearly support a role for ACE2 to cleave VE-cadherin, which leads to potential biomarkers of SARS-CoV-2 infection related with the vascular disease in "Long COVID-19".


Assuntos
COVID-19 , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2/metabolismo , Caderinas/metabolismo , Endotélio Vascular/metabolismo
3.
Theor Appl Genet ; 135(1): 301-319, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837509

RESUMO

KEY MESSAGE: Analysis of a wheat multi-founder population identified 14 yellow rust resistance QTL. For three of the four most significant QTL, haplotype analysis indicated resistance alleles were rare in European wheat. Stripe rust, or yellow rust (YR), is a major fungal disease of wheat (Triticum aestivum) caused by Puccinia striiformis Westend f. sp. tritici (Pst). Since 2011, the historically clonal European Pst races have been superseded by the rapid incursion of genetically diverse lineages, reducing the resistance of varieties previously showing durable resistance. Identification of sources of genetic resistance to such races is a high priority for wheat breeding. Here we use a wheat eight-founder multi-parent population genotyped with a 90,000 feature single nucleotide polymorphism array to genetically map YR resistance to such new Pst races. Genetic analysis of five field trials at three UK sites identified 14 quantitative trait loci (QTL) conferring resistance. Of these, four highly significant loci were consistently identified across all test environments, located on chromosomes 1A (QYr.niab-1A.1), 2A (QYr.niab-2A.1), 2B (QYr.niab-2B.1) and 2D (QYr.niab-2D.1), together explaining ~ 50% of the phenotypic variation. Analysis of these four QTL in two-way and three-way combinations showed combinations conferred greater resistance than single QTL, and genetic markers were developed that distinguished resistant and susceptible alleles. Haplotype analysis in a collection of wheat varieties found that the haplotypes associated with YR resistance at three of these four major loci were rare (≤ 7%) in European wheat, highlighting their potential utility for future targeted improvement of disease resistance. Notably, the physical interval for QTL QYr.niab-2B.1 contained five nucleotide-binding leucine-rich repeat candidate genes with integrated BED domains, of which two corresponded to the cloned resistance genes Yr7 and Yr5/YrSp.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/microbiologia , Puccinia/fisiologia , Triticum/genética , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Polimorfismo de Nucleotídeo Único , Puccinia/imunologia , Locos de Características Quantitativas , Triticum/imunologia , Triticum/microbiologia
4.
Theor Appl Genet ; 135(3): 741-753, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34821981

RESUMO

Wheat (Triticum aestivum L.) is a global commodity, and its production is a key component underpinning worldwide food security. Yellow rust, also known as stripe rust, is a wheat disease caused by the fungus Puccinia striiformis Westend f. sp. tritici (Pst), and results in yield losses in most wheat growing areas. Recently, the rapid global spread of genetically diverse sexually derived Pst races, which have now largely replaced the previous clonally propagated slowly evolving endemic populations, has resulted in further challenges for the protection of global wheat yields. However, advances in the application of genomics approaches, in both the host and pathogen, combined with classical genetic approaches, pathogen and disease monitoring, provide resources to help increase the rate of genetic gain for yellow rust resistance via wheat breeding while reducing the carbon footprint of the crop. Here we review key elements in the evolving battle between the pathogen and host, with a focus on solutions to help protect future wheat production from this globally important disease.


Assuntos
Basidiomycota , Triticum , Genômica , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
5.
Front Plant Sci ; 9: 881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30022985

RESUMO

Parastagonospora nodorum is a necrotrophic fungal pathogen of wheat (Triticum aestivum L.), one of the world's most important crops. P. nodorum mediates host cell death using proteinaceous necrotrophic effectors, presumably liberating nutrients that allow the infection process to continue. The identification of pathogen effectors has allowed host genetic resistance mechanisms to be separated into their constituent parts. In P. nodorum, three proteinaceous effectors have been cloned: SnToxA, SnTox1, and SnTox3. Here, we survey sensitivity to all three effectors in a panel of 480 European wheat varieties, and fine-map the wheat SnTox3 sensitivity locus Snn3-B1 using genome-wide association scans (GWAS) and an eight-founder wheat multi-parent advanced generation inter-cross (MAGIC) population. Using a Bonferroni corrected P ≤ 0.05 significance threshold, GWAS identified 10 significant markers defining a single locus, Snn3-B1, located on the short arm of chromosome 5B explaining 32% of the phenotypic variation [peak single nucleotide polymorphisms (SNPs), Excalibur_c47452_183 and GENE-3324_338, -log10P = 20.44]. Single marker analysis of SnTox3 sensitivity in the MAGIC population located Snn3-B1 via five significant SNPs, defining a 6.2-kb region that included the two peak SNPs identified in the association mapping panel. Accordingly, SNP Excalibur_c47452_183 was converted to the KASP genotyping system, and validated by screening a subset of 95 wheat varieties, providing a valuable resource for marker assisted breeding and for further genetic investigation. In addition, composite interval mapping in the MAGIC population identified six minor SnTox3 sensitivity quantitative trait loci, on chromosomes 2A (QTox3.niab-2A.1, P-value = 9.17-7), 2B (QTox3.niab-2B.1, P = 0.018), 3B (QTox3.niab-3B.1, P = 48.51-4), 4D (QTox3.niab-4D.1, P = 0.028), 6A (QTox3.niab-6A.1, P = 8.51-4), and 7B (QTox3.niab-7B.1, P = 0.020), each accounting for between 3.1 and 6.0 % of the phenotypic variance. Collectively, the outcomes of this study provides breeders with knowledge and resources regarding the sensitivity of European wheat germplasm to P. nodorum effectors, as well as simple diagnostic markers for determining allelic state at Snn3-B1.

6.
Cortex ; 103: 211-223, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29656245

RESUMO

Connectivity in intrinsically connected networks (ICNs) may predict individual differences in cognition and behavior. The drastic alterations in socioemotional awareness of patients with behavioral variant frontotemporal dementia (bvFTD) are presumed to arise from changes in one such ICN, the salience network (SN). We examined how individual differences in SN connectivity are reflected in overt social behavior in healthy individuals and patients, both to provide neuroscientific insight into this key brain-behavior relationship, and to provide a practical tool to diagnose patients with early bvFTD. We measured SN functional connectivity and socioemotional sensitivity in 65 healthy older adults and 103 patients in the earliest stage [Clinical Dementia Rating (CDR) Scale score ≤1] of five neurodegenerative diseases [14 bvFTD, 29 Alzheimer's disease (AD), 20 progressive supranuclear palsy (PSP), 21 semantic variant primary progressive aphasia (svPPA), and 19 non-fluent variant primary progressive aphasia (nfvPPA)]. All participants underwent resting-state functional imaging and an informant described their responsiveness to subtle emotional expressions using the Revised Self-Monitoring Scale (RSMS). Higher functional connectivity in the SN, predominantly between the right anterior insula (AI) and both "hub" cortical and "interoceptive" subcortical nodes, predicted socioemotional sensitivity among healthy individuals, showing that socioemotional sensitivity is a behavioral marker of SN function, and particularly of right AI functional connectivity. The continuity of this relationship in both healthy and neurologically affected individuals highlights the role of socioemotional sensitivity as an early diagnostic marker of SN connectivity. Clinically, this is particularly important for identification of patients in the earliest stage of bvFTD, where the SN is selectively vulnerable.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Afasia Primária Progressiva/diagnóstico por imagem , Demência Frontotemporal/diagnóstico por imagem , Individualidade , Rede Nervosa/diagnóstico por imagem , Percepção Social , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Idoso , Doença de Alzheimer/psicologia , Afasia Primária Progressiva/psicologia , Encéfalo/efeitos dos fármacos , Emoções/fisiologia , Feminino , Demência Frontotemporal/psicologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Paralisia Supranuclear Progressiva/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...