Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 11(11): 6211-6230, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282485

RESUMO

The presence of circulating tumor cells (CTCs) in a patient's bloodstream is a hallmark of metastatic cancer. The detection and analysis of CTCs is a promising diagnostic and prognostic strategy as they may carry useful genetic information from their derived primary tumor, and the enumeration of CTCs in the bloodstream has been known to scale with disease progression. However, the detection of CTCs is a highly challenging task owing to their sparse numbers in a background of billions of background blood cells. To effectively utilize CTCs, there is a need for an assay that can detect CTCs with high specificity and can locally enrich CTCs from a liquid biopsy. We demonstrate a versatile methodology that addresses these needs by utilizing a combination of nanoparticles. Enrichment is achieved using targeted magnetic nanoparticles and high specificity detection is achieved using a ratiometric detection approach utilizing multiplexed targeted and non-targeted surface-enhanced Raman Scattering Nanoparticles (SERS-NPs). We demonstrate this approach with model prostate and cervical circulating tumor cells and show the ex vivo utility of our methodology for the detection of PSMA or folate receptor over-expressing CTCs. Our approach allows for the mitigation of interference caused by the non-specific uptake of nanoparticles by other cells present in the bloodstream and our results from magnetically trapped CTCs reveal over a 2000% increase in targeted SERS-NP signal over non-specifically bound SERS-NPs.

2.
Am J Nucl Med Mol Imaging ; 6(3): 185-98, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27508105

RESUMO

Anti-CA125 antibodies have been used in immunoassays to quantify levels of shed antigen in the serum of patients who are under surveillance for epithelial ovarian cancer (EOC). However, there is currently no molecular imaging probe in the clinic for the assessment of CA125 expression in vivo. The present study describes the development of an (18)F-labeled single-chain variable fragment (scFv) for PET imaging of CA125 in preclinical EOC models. Anti-CA125 scFv was derived from MAb-B43.13 by recombinant expression of the fragment in E.coli. Fragment scFv-B43.13 was purified via immobilized metal affinity chromatography and characterized for antigen binding via immuno-staining and flow cytometry. Prosthetic group N-succinimidyl 4-[(18)F]fluorobenzoate ([(18)F]SFB) was used for radiolabeling of scFv-B43.13. Preclinical ovarian cancer models were developed based on ovarian cancer cell lines OVCAR3 (CA125-positive) and SKOV3 (CA125-negative) in NIH-III mice. The radiopharmacological profile of (18)F-labeled scFv-B43.13 ([(18)F]FBz-scFv-B43.13) was studied with PET. [(18)F]FBz-scFv-B43.13 was prepared in radiochemical yields of 3.7 ± 1.8% (n = 5) at an effective specific activity of 3.88 ± 0.76 GBq/µmol (n = 5). The radiotracer demonstrated selective uptake in CA125-positive OVCAR3 cells and virtually no uptake in CA125-negative SKOV3 cells. Standardized uptake values (SUV) of radioactivity uptake in OVCAR3 tumors was 0.5 (n = 3) and 0.3 (n = 2) in SKOV3 tumors after 60 min post injection (p.i.).

3.
Lab Chip ; 13(22): 4290-4, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24056916

RESUMO

Radiolabeling of peptides with the short-lived positron emitter fluorine-18 is usually a challenging endeavour. Conventional radiolabeling reactions mostly require fairly large amounts of peptides as labeling precursors, and extensive synthesis times. Intrinsic advantages of microfluidic technology permit to overcome these hurdles. Herein, we describe how microfluidic technology combined with [(18)F]FDG as readily available PET radiotracer allows for fast and high yielding radiolabeling reactions of peptides with fluorine-18.


Assuntos
Fluordesoxiglucose F18/química , Técnicas Analíticas Microfluídicas , Peptídeos/química , Compostos Radiofarmacêuticos/química , Marcação por Isótopo , Peptídeos/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Temperatura
4.
Nucl Med Biol ; 38(2): 235-45, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21315279

RESUMO

INTRODUCTION: Microfluidic technology allows fast reactions in a simple experimental setup, while using very low volumes and amounts of starting material. Consequently, microfluidic technology is an ideal tool for radiolabeling reactions involving short-lived positron emitters. Optimization of the complex array of different reaction conditions requires knowledge of the different reaction parameters linked to the microfluidic system as well as their influence on the radiochemical yields. 1-(5-Deoxy-5-fluoro-α-d-arabinofuranosyl)-2-nitroimidazole ([(18)F]FAZA) is a frequently used radiotracer for PET imaging of tumor hypoxia. The present study describes the radiosynthesis of [(18)F]FAZA by means of microfluidic technology and subsequent small animal PET imaging in EMT-6 tumor-bearing mice. METHODS: Radiosyntheses were performed using the NanoTek Microfluidic Synthesis System (Advion BioSciences, Inc.). Optimal reaction conditions were studied through screening different reaction parameters like temperature, flow rate, residency time, concentration of the labeling precursor (1-(2,3-di-O-acetyl-5-O-tosyl-α-d-arabinofuranosyl)-2-nitroimidazole) and the applied volume ratio between the labeling precursor and [(18)F]fluoride. RESULTS: Optimized reaction conditions at low radioactivity levels (1 to 50 MBq) afforded 63% (decay-corrected) of HPLC-purified [(18)F]FAZA within 25 min. Higher radioactivity levels (0.4 to 2.1 GBq) gave HPLC-purified [(18)F]FAZA in radiochemical yields of 40% (decay-corrected) within 60 min at a specific activity in the range of 70 to 150 GBq/µmol. Small animal PET studies in EMT-6 tumor-bearing mice showed radioactivity accumulation in the tumor (SUV(20min) 0.74 ± 0.08) resulting in an increasing tumor-to-muscle ratio over time. CONCLUSIONS: Microfluidic technology is an ideal method for the rapid and efficient radiosynthesis of [(18)F]FAZA for preclinical radiopharmacological studies. Careful analysis of various reaction parameters is an important requirement for the understanding of the influence of different reaction parameters on the radiochemical yield using microfluidic technology. Exploration of microfluidic technology for the radiosynthesis of other PET radiotracers in clinically relevant radioactivity levels is currently in progress.


Assuntos
Técnicas Analíticas Microfluídicas , Nitroimidazóis/síntese química , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/instrumentação , Ribose/análogos & derivados , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Nitroimidazóis/química , Ribose/síntese química , Ribose/química
5.
J Org Chem ; 71(9): 3619-22, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16626151

RESUMO

A short and high-yielding synthesis has been devised to prepare C-linked 2-deoxy-2-acetamido-alpha-D-galactopyranose derivative 3. One of the main advantages of this approach is that it employs commercially available and inexpensive d-glucosamine as the starting material. The key steps include a highly stereoselective C-allylation followed by epimerization of the C-4 hydroxyl group. Building block 3 and orthogonally protected C-linked 2-deoxy-2-acetamido-alpha-D-galactopyranose derivative 2 were obtained in 44% overall yield (six steps) and 29% overall yield (eight steps), respectively. This represents a significant improvement over previously reported syntheses.


Assuntos
Galactose/síntese química , Galactose/análogos & derivados
6.
Biomacromolecules ; 7(2): 565-71, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16471931

RESUMO

Antifreeze glycoproteins (AFGPs) have many potential applications ranging from the cryopreservation and hypothermic storage of tissues and organs to the preservation of various frozen food products. Since supplying native AFGP for these applications is a labor-intensive and costly process, the rational design and synthesis of functional AFGP analogues is a very attractive alternative. While structure-function studies have implicated specific structural motifs as essential for antifreeze activity in AFGP, the relationship between solution conformation and antifreeze activity is poorly understood. Toward this end, we have analyzed AFGP8 in aqueous solutions using dynamic light scattering (DLS) and circular dichroism (CD). Our results indicate that AFGP8 forms discrete aggregates in solution. These aggregates are predominantly composed of dimers that form at solution concentrations greater than 20 mM. CD spectroscopy indicates that the preferred solution conformation of AFGP8 is consistent with that of random coil. However, significant beta-sheet and alpha-helix character is observed in more concentrated solutions, indicating that these glycopeptides are highly flexible in solution. Aggregation appears to have a minimal effect on the overall solution conformation. Thermal hysteresis (TH) activity of the aggregated solutions is much higher than that of less concentrated solutions that do not form aggregates. While cooperative functioning between lower and higher molecular weight AFGPs has been reported, this is the first instance where cooperative functioning in lower molecular weight AFGPs has been observed.


Assuntos
Proteínas Anticongelantes/química , Dicroísmo Circular , Luz , Conformação Molecular , Peso Molecular , Espalhamento de Radiação , Sensibilidade e Especificidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...