Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792049

RESUMO

Materials based on polymer hydrogels have demonstrated potential as innovative Fenton catalysts for treating water. However, developing these polymer-supported catalysts with robust stability presents a significant challenge. This paper explores the development and application of polymer-supported heterogeneous Fenton catalysts for the environmental remediation of wastewater, emphasizing the enhancement of metal incorporation into catalysts for improved efficiency. The study begins with an introduction to the heterogeneous Fenton process and its relevance to wastewater treatment. It further delves into the specifics of polymer-supported heterogeneous Fenton catalysts, focusing on iron oxide, copper complexes/nanoparticles, and ruthenium as key components. The synthesis methods employed to prepare these catalysts are discussed, highlighting the innovative approaches to achieve substantial metal incorporation. Operational parameters such as catalyst dosage, pollutant concentration, and the effect of pH on the process efficiency are thoroughly examined. The catalytic performance is evaluated, providing insights into the effectiveness of these catalysts in degrading pollutants. Recent developments in the field are reviewed, showcasing advancements in catalyst design and application. The study also addresses the stability and reusability of polymer-supported heterogeneous Fenton catalysts, critical factors for their practical application in environmental remediation. Environmental applications are explored, demonstrating the potential of these catalysts in addressing various pollutants. The Conclusions offers future perspectives, underlining the ongoing challenges and opportunities in the field, and the importance of further research to enhance the efficacy and sustainability of polymer-supported heterogeneous Fenton catalysts for wastewater treatment.

2.
Environ Sci Pollut Res Int ; 24(22): 18309-18319, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28639017

RESUMO

Diversity and rapidly multiplication of the pollutants incite as to improve the conventional treatments wastewater methods. One of the bottlenecks often faced is the presence into wastewater of organic pollutants with complex structures that requests the design of efficient processes. Thus, this work investigates the removal of polyvinylamine sulfonate anthrapyridone (PSA) dye which complex structure makes difficult its degradation by conventional technologies. For that, a heterogeneous oxidative process using pyrite as sustainable catalyst was designed. Initially, the performance of the system BBD-carbon felt as anode and cathode, respectively for the production of H2O2 was determined in comparison with system boron-doped diamond nickel foam. The carbon felt electrode provided the highest oxidant production, and it was selected for the treatment of the polymeric dye. Several oxidative processes were evaluated, and the best degradation levels were obtained by application of electro-Fenton-pyrite process. In addition, it was determined that dye removal followed a kinetic model of pseudo-first-order achieving the highest efficiency by operation at optimum dosage of pyrite 2 g/L and 200 mA of current intensity. Depending on the optimal experimental conditions, these values lead to a nearly complete mineralization (total organic carbon removal of 95%) after 6 h. Furthermore, the reusability of pyrite was evaluated, by removal of PSA in four cycles.


Assuntos
Antraquinonas/análise , Corantes/análise , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química , Ferro/química , Piridonas/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Catálise , Eletrodos , Cinética , Oxirredução , Sulfetos/química , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...