Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37028356

RESUMO

Pseudo-Haptic techniques, or visuo-haptic illusions, leverage user's visual dominance over haptics to alter the users' perception. As they create a discrepancy between virtual and physical interactions, these illusions are limited to a perceptual threshold. Many haptic properties have been studied using pseudo-haptic techniques, such as weight, shape or size. In this paper, we focus on estimating the perceptual thresholds for pseudo-stiffness in a virtual reality grasping task. We conducted a user study (n = 15) where we estimated if compliance can be induced on a non-compressible tangible object and to what extent. Our results show that (1) compliance can be induced in a rigid tangible object and that (2) pseudo-haptics can simulate beyond 24 N/cm stiffness ( k ≥ 24 N / cm, between a gummy bear and a raisin, up to rigid objects). Pseudo-stiffness efficiency is (3) enhanced by the objects' scales, but mostly (4) correlated to the user input force. Taken altogether, our results offer novel opportunities to simplify the design of future haptic interfaces, and extend the haptic properties of passive props in VR.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37022896

RESUMO

Haptic exoskeleton gloves are a widespread solution for providing force-feedback in Virtual Reality (VR), especially for 3D object manipulations. However, they are still lacking an important feature regarding in-hand haptic sensations: the palmar contact. In this paper, we present PalmEx, a novel approach which incorporates palmar force-feedback into exoskeleton gloves to improve the overall grasping sensations and manual haptic interactions in VR. PalmEx's concept is demonstrated through a self-contained hardware system augmenting a hand exoskeleton with an encountered palmar contact interface - physically encountering the users' palm. We build upon current taxonomies to elicit PalmEx's capabilities for both the exploration and manipulation of virtual objects. We first conduct a technical evaluation optimising the delay between the virtual interactions and their physical counterparts. We then empirically evaluate PalmEx's proposed design space in a user study (n=12) to assess the potential of a palmar contact for augmenting an exoskeleton. Results show that PalmEx offers the best rendering capabilities to perform believable grasps in VR. PalmEx highlights the importance of the palmar stimulation, and provides a low-cost solution to augment existing high-end consumer hand exoskeletons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...