Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36850717

RESUMO

Machine learning (ML) has succeeded in improving our daily routines by enabling automation and improved decision making in a variety of industries such as healthcare, finance, and transportation, resulting in increased efficiency and production. However, the development and widespread use of this technology has been significantly hampered by concerns about data privacy, confidentiality, and sensitivity, particularly in healthcare and finance. The "data hunger" of ML describes how additional data can increase performance and accuracy, which is why this question arises. Federated learning (FL) has emerged as a technology that helps solve the privacy problem by eliminating the need to send data to a primary server and collect it where it is processed and the model is trained. To maintain privacy and improve model performance, FL shares parameters rather than data during training, in contrast to the typical ML practice of sending user data during model development. Although FL is still in its infancy, there are already applications in various industries such as healthcare, finance, transportation, and others. In addition, 32% of companies have implemented or plan to implement federated learning in the next 12-24 months, according to the latest figures from KPMG, which forecasts an increase in investment in this area from USD 107 million in 2020 to USD 538 million in 2025. In this context, this article reviews federated learning, describes it technically, differentiates it from other technologies, and discusses current FL aggregation algorithms. It also discusses the use of FL in the diagnosis of cardiovascular disease, diabetes, and cancer. Finally, the problems hindering progress in this area and future strategies to overcome these limitations are discussed in detail.


Assuntos
Algoritmos , Doenças Cardiovasculares , Humanos , Automação , Indústrias , Aprendizado de Máquina
2.
Sensors (Basel) ; 23(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679626

RESUMO

Background: The advancement of information and communication technologies and the growing power of artificial intelligence are successfully transforming a number of concepts that are important to our daily lives. Many sectors, including education, healthcare, industry, and others, are benefiting greatly from the use of such resources. The healthcare sector, for example, was an early adopter of smart wearables, which primarily serve as diagnostic tools. In this context, smart wearables have demonstrated their effectiveness in detecting and predicting cardiovascular diseases (CVDs), the leading cause of death worldwide. Objective: In this study, a systematic literature review of smart wearable applications for cardiovascular disease detection and prediction is presented. After conducting the required search, the documents that met the criteria were analyzed to extract key criteria such as the publication year, vital signs recorded, diseases studied, hardware used, smart models used, datasets used, and performance metrics. Methods: This study followed the PRISMA guidelines by searching IEEE, PubMed, and Scopus for publications published between 2010 and 2022. Once records were located, they were reviewed to determine which ones should be included in the analysis. Finally, the analysis was completed, and the relevant data were included in the review along with the relevant articles. Results: As a result of the comprehensive search procedures, 87 papers were deemed relevant for further review. In addition, the results are discussed to evaluate the development and use of smart wearable devices for cardiovascular disease management, and the results demonstrate the high efficiency of such wearable devices. Conclusions: The results clearly show that interest in this topic has increased. Although the results show that smart wearables are quite accurate in detecting, predicting, and even treating cardiovascular disease, further research is needed to improve their use.


Assuntos
Doenças Cardiovasculares , Dispositivos Eletrônicos Vestíveis , Humanos , Doenças Cardiovasculares/diagnóstico , Inteligência Artificial
3.
Sensors (Basel) ; 22(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36236570

RESUMO

Today's world is changing dramatically due to the influence of various factors. Whether due to the rapid development of technological tools, advances in telecommunication methods, global economic and social events, or other reasons, almost everything is changing. As a result, the concepts of a "job" or work have changed as well, with new work shifts being introduced and the office no longer being the only place where work is done. In addition, our non-stop active society has increased the stress and pressure at work, causing fatigue to spread worldwide and becoming a global problem. Moreover, it is medically proven that persistent fatigue is a cause of serious diseases and health problems. Therefore, monitoring and detecting fatigue in the workplace is essential to improve worker safety in the long term. In this paper, we provide an overview of the use of smart wearable devices to monitor and detect occupational physical fatigue. In addition, we present and discuss the challenges that hinder this field and highlight what can be done to advance the use of smart wearables in workplace fatigue detection.


Assuntos
Dispositivos Eletrônicos Vestíveis , Local de Trabalho , Monitorização Fisiológica
4.
Sensors (Basel) ; 22(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35270989

RESUMO

(1) Background: The use of smart devices to better manage diabetes has increased significantly in recent years. These technologies have been introduced in order to make life easier for patients with diabetes by allowing better control of the stability of blood sugar levels and anticipating the occurrence of dangerous events (hypo/hyperglycemia), etc. That being said, the main objectives of the self-management of diabetes is to improve the lifestyle and life quality of patients with diabetes; (2) Methods: We performed a systematic review based on articles that focus on the use of smart devices for the monitoring and better management of diabetes. The search was focused on keywords related to the topic, such as "Diabetes", "Technology", "Self-management", "Artificial Intelligence", etc. This was performed using databases, such as Scopus, Google Scholar, and PubMed; (3) Results: A total of 89 studies, published between 2011 and 2021, were included. The majority of the selected research aims to solve a diabetes management problem (e.g., blood glucose prediction, early detection of risk events, and the automatic adjustment of insulin doses, etc.). In these studies, wearable devices were used in combination with artificial intelligence (AI) techniques; (4) Conclusions: Wearable devices have attracted a great deal of scientific interest in the field of healthcare for people with chronic conditions, such as diabetes. They are capable of assisting in the management of diabetes, as well as preventing complications associated with this condition. Furthermore, the usage of these devices has improved illness management and quality of life.


Assuntos
Diabetes Mellitus , Autogestão , Inteligência Artificial , Diabetes Mellitus/terapia , Humanos , Aprendizado de Máquina , Qualidade de Vida
5.
Sensors (Basel) ; 21(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920950

RESUMO

This review presents the state of the art and a global overview of research challenges of real-time distributed activity recognition in the field of healthcare. Offline activity recognition is discussed as a starting point to establish the useful concepts of the field, such as sensor types, activity labeling and feature extraction, outlier detection, and machine learning. New challenges and obstacles brought on by real-time centralized activity recognition such as communication, real-time activity labeling, cloud and local approaches, and real-time machine learning in a streaming context are then discussed. Finally, real-time distributed activity recognition is covered through existing implementations in the scientific literature, and six main angles of optimization are defined: Processing, memory, communication, energy, time, and accuracy. This survey is addressed to any reader interested in the development of distributed artificial intelligence as well activity recognition, regardless of their level of expertise.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Atenção à Saúde
6.
Sensors (Basel) ; 17(11)2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29112175

RESUMO

Advances in domains such as sensor networks and electronic and ambient intelligence have allowed us to create intelligent environments (IEs). However, research in IE is being held back by the fact that researchers face major difficulties, such as a lack of resources for their experiments. Indeed, they cannot easily build IEs to evaluate their approaches. This is mainly because of economic and logistical issues. In this paper, we propose a simulator to build virtual IEs. Simulators are a good alternative to physical IEs because they are inexpensive, and experiments can be conducted easily. Our simulator is open source and it provides users with a set of virtual sensors that simulates the behavior of real sensors. This simulator gives the user the capacity to build their own environment, providing a model to edit inhabitants' behavior and an interactive mode. In this mode, the user can directly act upon IE objects. This simulator gathers data generated by the interactions in order to produce datasets. These datasets can be used by scientists to evaluate several approaches in IEs.

7.
Sensors (Basel) ; 17(10)2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29053581

RESUMO

The Internet of things has profoundly changed the way we imagine information science and architecture, and smart homes are an important part of this domain. Created a decade ago, the few existing prototypes use technologies of the day, forcing designers to create centralized and costly architectures that raise some issues concerning reliability, scalability, and ease of access which cannot be tolerated in the context of assistance. In this paper, we briefly introduce a new kind of architecture where the focus is placed on distribution. More specifically, we respond to the first issue we encountered by proposing a lightweight and portable messaging protocol. After running several tests, we observed a maximized bandwidth, whereby no packets were lost and good encryption was obtained. These results tend to prove that our innovation may be employed in a real context of distribution with small entities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...