Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 333: 107097, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34768215

RESUMO

The natural abundance 29Si echo-train coherence lifetimes in network-modified silicate glasses were examined under static and magic-angle spinning (MAS) conditions. The nuclear magnetic properties of modifier cations were found to play a major role in determining 29Si coherence lifetimes, leading to differences as large as three orders of magnitude. In compositions with abundant NMR active nuclei, such as alkali silicates, the 29Si coherence lifetimes are dominated by coherent dephasing due to residual heteronuclear dipolar couplings, whereas in compositions dilute in NMR active nuclei, such as alkaline earth silicates, the 29Si coherence lifetimes are dominated by incoherent dephasing due to paramagnetic impurities. Expressing the inverse of the coherence lifetime as a residual full width at half maximum (FWHM), we found that increasing rates of both MAS and a π-pulse train are effective in removing the residual 29Si heteronuclear broadenings, with a near-linear relationship between FWHM and MAS rotor period and π-pulse spacing. Based on these results, we conclude that accurate 29Si J coupling measurements will be the most challenging in lithium silicate glasses due to strong homonuclear dipolar couplings among 7Li nuclei, requiring MAS speeds up to 100 kHz, and be the least challenging in the alkaline earth silicate glasses. At a modest MAS speed of 14kHz, distributions of geminal J couplings across Si-O-Si linkages were measured in alkali and alkaline earth silicate glasses giving mean values of 4.2Hz and 5.1Hz in 0.4 CaO·0.6 SiO2 and 0.33 Ba2O·0.67 SiO2 glasses, respectively, and 5.2Hz and 5.3Hz in 0.33 Na2O·0.67 SiO2 and 0.33 K2O·0.67 SiO2 glasses, respectively. We also observe greater variance in the J distributions of alkaline earth silicate glasses consistent with greater structural disorder due to increased modifier cation potential, i.e., the charge-to-radius ratio, Z/r of the cation.

2.
Angew Chem Int Ed Engl ; 54(38): 11084-7, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26352021

RESUMO

The diastereoselective cyclopropanation of various alkenes with diazoacetate derivatives can be achieved under mechanochemical conditions using metallic silver foil and a stainless-steel vial and ball system. This solvent-free method displays analogous reactivity and selectivity to solution-phase reactions without the need for slow diazoacetate addition or an inert atmosphere. The heterogeneous silver-foil catalyst system is easily recyclable without any appreciable loss of activity or selectivity being observed. The cyclopropanation products were obtained with excellent diastereoselectivities (up to 98:2 d.r.) and in high yields (up to 96 %).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...