Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401870, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031540

RESUMO

Polymer-nanoparticle (PNP) hydrogels are a class of nanocomposite materials showing potential as injectable platforms for biomedical applications. Their design is limited by incomplete knowledge of how the binding motif impacts the viscoelastic properties of the material and is generally constrained to non-responsive supramolecular interactions. Expanding the scope of available interactions and advancing the understanding of how defined interactions influence network formation would accelerate PNP hydrogel design. To address this gap in the design of PNP hydrogels, the study designs and investigates a tunable platform based on beta-cyclodextrin (ßCD) host-guest cross-links between functionalized polymers and nanoparticles. A host-functionalized polymer (ßCD hyaluronic acid) and guest harboring block co-polymer (poly(ethylene glycol)-b-poly(lactic acid)) NPs are synthesized. The presence and accessibility for binding of the host and guest moieties are characterized via isothermal titration calorimetry. PNP hydrogels with varying concentrations of functionalized polymer and NPs reveal a limited window of concentrations for gelation. It is hypothesized that network formation is governed by the capacity of polymer chains to effectively bridge NPs, which is related to the host-guest ratios present in the system. Further, photo-responsive guests are incorporated to engineer photoreversible gelation of PNP hydrogels via exposure to specific wavelengths of light.

2.
Nat Biomed Eng ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710838

RESUMO

Following immunization, lymph nodes dynamically expand and contract. The mechanical and cellular changes enabling the early-stage expansion of lymph nodes have been characterized, yet the durability of such responses and their implications for adaptive immunity and vaccine efficacy are unknown. Here, by leveraging high-frequency ultrasound imaging of the lymph nodes of mice, we report more potent and persistent lymph-node expansion for animals immunized with a mesoporous silica vaccine incorporating a model antigen than for animals given bolus immunization or standard vaccine formulations such as alum, and that durable and robust lymph-node expansion was associated with vaccine efficacy and adaptive immunity for 100 days post-vaccination in a mouse model of melanoma. Immunization altered the mechanical and extracellular-matrix properties of the lymph nodes, drove antigen-dependent proliferation of immune and stromal cells, and altered the transcriptional features of dendritic cells and inflammatory monocytes. Strategies that robustly maintain lymph-node expansion may result in enhanced vaccination outcomes.

3.
Adv Mater ; : e2309860, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615189

RESUMO

Artificial antigen-presenting cells (aAPCs) are currently used to manufacture T cells for adoptive therapy in cancer treatment, but a readily tunable and modular system can enable both rapid T cell expansion and control over T cell phenotype. Here, it is shown that microgels with tailored surface biochemical properties can serve as aAPCs to mediate T cell activation and expansion. Surface functionalization of microgels is achieved via layer-by-layer coating using oppositely charged polymers, forming a thin but dense polymer layer on the surface. This facile and versatile approach is compatible with a variety of coating polymers and allows efficient and flexible surface-specific conjugation of defined peptides or proteins. The authors demonstrate that tethering appropriate stimulatory ligands on the microgel surface efficiently activates T cells for polyclonal and antigen-specific expansion. The expansion, phenotype, and functional outcome of primary mouse and human T cells can be regulated by modulating the concentration, ratio, and distribution of stimulatory ligands presented on microgel surfaces as well as the stiffness and viscoelasticity of the microgels.

4.
Adv Healthc Mater ; 13(18): e2304287, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38488218

RESUMO

Hydrogels provide a versatile platform for biomedical material fabrication that can be structurally and mechanically fine-tuned to various tissues and applications. Applications of hydrogels in biomedicine range from highly dynamic injectable hydrogels that can flow through syringe needles and maintain or recover their structure after extrusion to solid-like wound-healing patches that need to be stretchable while providing a selective physical barrier. In this study, a toolbox is designed using thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) polymeric matrices and nanocelluloses as reinforcing agent to obtain biocompatible hydrogels with altering mechanical properties, from a liquid injectable to a solid-like elastic hydrogel. The liquid hydrogels possess low viscosity and shear-thinning properties at 25 °C, which allows facile injection at room temperature, while they become viscoelastic gels at body temperature. In contrast, the covalently cross-linked solid-like hydrogels exhibit enhanced viscoelasticity. The liquid hydrogels are biocompatible and are able to delay the in vitro release and maintain the bioactivity of model drugs. The antimicrobial agent loaded solid-like hydrogels are effective against typical wound-associated pathogens. This work presents a simple method of tuning hydrogel mechanical strength to easily adapt to applications in different soft tissues and broaden the potential of renewable bio-nanoparticles in hybrid biomaterials with controlled drug release capabilities.


Assuntos
Resinas Acrílicas , Materiais Biocompatíveis , Hidrogéis , Hidrogéis/química , Hidrogéis/farmacologia , Resinas Acrílicas/química , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Viscosidade , Animais , Humanos , Celulose/química , Camundongos
5.
Macromolecules ; 55(18): 8040-8048, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36186573

RESUMO

Control of the properties of nanoparticles (NPs), including size, is critical for their application in biomedicine and engineering. Polymeric NPs are commonly produced by nanoprecipitation, where a solvent containing a block copolymer is mixed rapidly with a nonsolvent, such as water. Empirical evidence suggests that the choice of solvent influences NP size; yet, the specific mechanism remains unclear. Here, we show that solvent controls NP size by limiting block copolymer assembly. In the initial stages of mixing, polymers assemble into dynamic aggregates that grow via polymer exchange. At later stages of mixing, further growth is prevented beyond a solvent-specific water fraction. Thus, the solvent sets NP size by controlling the extent of dynamic growth up to growth arrest. An a priori model based on spinodal decomposition corroborates our proposed mechanism, explaining how size scales with the solvent-dependent critical water fraction of growth arrest and enabling more efficient NP engineering.

6.
Adv Healthc Mater ; 11(7): e2101426, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34936732

RESUMO

Antimicrobial resistance (AMR) develops when bacteria no longer respond to conventional antimicrobial treatment. The limited treatment options for resistant infections result in a significantly increased medical burden. Antimicrobial peptides offer advantages for treatment of resistant infections, including broad-spectrum activity and lower risk of resistance development. However, sensitivity to proteolytic cleavage often limits their clinical application. Here, a moldable and biodegradable colloidal nano-network is presented that protects bioactive peptides from enzymatic degradation and delivers them locally. An antimicrobial peptide, PA-13, is encapsulated electrostatically into positively and negatively charged nanoparticles made of chitosan and dextran sulfate without requiring chemical modification. Mixing and concentration of oppositely charged particles form a nano-network with the rheological properties of a cream or injectable hydrogel. After exposure to proteolytic enzymes, the formed nano-network loaded with PA-13 eliminates Pseudomonas aeruginosa during in vitro culture and in an ex vivo porcine skin model while the unencapsulated PA-13 shows no antibacterial effect. This demonstrates the ability of the nano-network to protect the antimicrobial peptide in an enzyme-challenged environment, such as a wound bed. Overall, the nano-network presents a useful platform for antimicrobial peptide protection and delivery without impacting peptide bioactivity.


Assuntos
Anti-Infecciosos , Quitosana , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos , Quitosana/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Pseudomonas aeruginosa , Suínos
7.
Adv Mater ; 34(9): e2106941, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34954875

RESUMO

Moldable hydrogels are increasingly used as injectable or extrudable materials in biomedical and industrial applications owing to their ability to flow under applied stress (shear-thin) and reform a stable network (self-heal). Nanoscale components can be added to dynamic polymer networks to modify their mechanical properties and broaden the scope of applications. Viscoelastic polymer-nanoparticle (PNP) hydrogels comprise a versatile and tunable class of dynamic nanocomposite materials that form via reversible interactions between polymer chains and nanoparticles. However, PNP hydrogel formation is restricted to specific interactions between select polymers and nanoparticles, resulting in a limited range of mechanical properties and constraining their utility. Here, a facile strategy to reinforce PNP hydrogels through the simple addition of α-cyclodextrin (αCD) to the formulation is introduced. The formation of polypseudorotoxanes between αCD and the hydrogel components resulted in a drastic enhancement of the mechanical properties. Furthermore, supramolecular reinforcement of CD-PNP hydrogels enabled decoupling of the mechanical properties and material functionality. This allows for modular exchange of structural components from a library of functional polymers and nanoparticles. αCD supramolecular binding motifs are leveraged to form CD-PNP hydrogels with biopolymers for high-fidelity 3D (bio)printing and drug delivery as well as with inorganic NPs to engineer magnetic or conductive materials.


Assuntos
Nanocompostos , Nanopartículas , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Nanocompostos/química , Nanopartículas/química , Polímeros/química
8.
Biofabrication ; 13(4)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34433148

RESUMO

Recent advances in additive manufacturing (AM) technologies provide tools to fabricate biological structures with complex three-dimensional (3D) organization. Deposition-based approaches have been exploited to manufacture multimaterial constructs. Stimulus-triggered approaches have been used to fabricate scaffolds with high resolution. Both features are useful to produce biomaterials that mimic the hierarchical organization of human tissues. Recently, multitechnology biofabrication approaches have been introduced that integrate benefits from different AM techniques to enable more complex materials design. However, few methods allow for tunable properties at both micro- and macro-scale in materials that are conducive for cell growth. To improve the organization of biofabricated constructs, we integrated direct ink writing (DIW) with digital light processing (DLP) to form multimaterial constructs with improved spatial control over final scaffold mechanics. Polymer-nanoparticle hydrogels were combined with methacryloyl gelatin (GelMA) to engineer dual inks that were compatible with both DIW and DLP. The shear-thinning and self-healing properties of the dual inks enabled extrusion-based 3D printing. The inclusion of GelMA provided a handle for spatiotemporal control of cross-linking with DLP. Exploiting this technique, complex multimaterial constructs were printed with defined mechanical reinforcement. In addition, the multitechnology approach was used to print live cells for biofabrication applications. Overall, the combination of DIW and DLP is a simple and efficient strategy to fabricate hierarchical biomaterials with user-defined control over material properties at both micro- and macro-scale.


Assuntos
Tinta , Materiais Biocompatíveis , Humanos , Impressão Tridimensional , Engenharia Tecidual , Redação
9.
ACS Biomater Sci Eng ; 7(9): 4048-4076, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-33792286

RESUMO

Hydrogel adhesion inherently relies on engineering the contact surface at soft and hydrated interfaces. Upon contact, adhesion normally occurs through the formation of chemical or physical interactions between the disparate surfaces. The ability to form these adhesion junctions is challenging for hydrogels as the interfaces are wet and deformable and often contain low densities of functional groups. In this Review, we link the design of the binding chemistries or adhesion junctions, whether covalent, dynamic covalent, supramolecular, or physical, to the emergent adhesive properties of soft and hydrated interfaces. Wet adhesion is useful for bonding to or between tissues and implants for a range of biomedical applications. We highlight several recent and emerging adhesive hydrogels for use in biomedicine in the context of efficient junction design. The main focus is on engineering hydrogel adhesion through molecular design of the junctions to tailor the adhesion strength, reversibility, stability, and response to environmental stimuli.


Assuntos
Adesivos , Hidrogéis , Próteses e Implantes
10.
Chimia (Aarau) ; 73(12): 1034, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31883559
11.
Small ; 15(51): e1905421, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31762197

RESUMO

Ink engineering is a fundamental area of research within additive manufacturing (AM) that designs next-generation biomaterials tailored for additive processes. During the design of new inks, specific requirements must be considered, such as flowability, postfabrication stability, biointegration, and controlled release of therapeutic molecules. To date, many (bio)inks have been developed; however, few are sufficiently versatile to address a broad range of applications. In this work, a universal nanocarrier ink platform is presented that provides tailored rheology for extrusion-based AM and facilitates the formulation of biofunctional inks. The universal nanocarrier ink (UNI) leverages reversible polymer-nanoparticle interactions to form a transient physical network with shear-thinning and self-healing properties engineered for direct ink writing (DIW). The unique advantage of the material is that a range of functional secondary polymers can be combined with the UNI to enable stabilization of printed constructs via secondary cross-linking as well as customized biofunctionality for tissue engineering and drug delivery applications. Specific UNI formulations are used for bioprinting of living tissue constructs and DIW of controlled release devices. The robust and versatile nature of the UNI platform enables rapid formulation of a broad range of functional inks for AM of advanced biomaterials.


Assuntos
Materiais Biocompatíveis/química , Bioimpressão , Reologia , Engenharia Tecidual/métodos
12.
ACS Appl Mater Interfaces ; 11(42): 38578-38585, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31573787

RESUMO

Injectable hydrogels from biocompatible materials are in demand for tissue engineering and drug delivery systems. Here, we produce hydrogels from mere cellulose nanocrystals (CNCs) by salt-induced charge screening. The injectability of CNC hydrogels was assessed by a combination of shear and capillary rheology, revealing that CNC hydrogels are conveyed via plug flow in capillaries allowing injection with minimal impact on mechanical properties. The potential of CNC hydrogels as drug carriers was elaborated by the in vitro release of the model protein bovine serum albumin (BSA), poorly water soluble tetracycline (TC), and readily soluble doxorubicin (DOX) into physiological saline and simulated gastric juice. For TC, a burst release was observed within 2 days, whereas BSA and DOX both showed a sustained release for 2 weeks. Only DOX was released fully from the hydrogels. The different release patterns were attributed to drug size, solubility, and specific drug-CNC interactions. The biocompatibility of CNC hydrogels and maintained bioactivity of released DOX were confirmed in a HeLa cell assay. The drug release was modulated by the incorporation of sucrose or xanthan gum in CNC hydrogels, whereas altering CNC concentration showed minor effects. The release into simulated gastric juice at pH 2 ceased for BSA due to charge inversion and electrostatic complexation, but not for smaller TC. Thus, CNC hydrogels may act as pH-responsive delivery systems that preserve drugs under gastric conditions followed by pH-triggered release in the duodenum.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Hidrogéis/química , Nanopartículas/química , Animais , Bovinos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Cinética , Reologia , Soroalbumina Bovina/química , Resistência ao Cisalhamento , Solubilidade , Tetraciclina/química , Tetraciclina/metabolismo , Tetraciclina/farmacologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-31921826

RESUMO

Polymeric nanoparticles (NPs) are increasingly used as therapeutics, diagnostics, and building blocks in (bio)materials science. Current barriers to translation are limited control over NP physicochemical properties and robust scale-up of their production. Flow-based devices have emerged for controlled production of polymeric NPs, both for rapid formulation screening (~µg min-1) and on-scale production (~mg min-1). While flow-based devices have improved NP production compared to traditional batch processes, automated processes are desired for robust NP production at scale. Therefore, we engineered an automated coaxial jet mixer (CJM), which controlled the mixing of an organic stream containing block copolymer and an aqueous stream, for the continuous nanoprecipitation of polymeric NPs. The CJM was operated stably under computer control for up to 24 h and automated control over the flow conditions tuned poly(ethylene glycol)-block-polylactide (PEG5K -b-PLA20K ) NP size between ≈56 nm and ≈79 nm. In addition, the automated CJM enabled production of NPs of similar size (D h ≈ 50 nm) from chemically diverse block copolymers, PEG5K -b-PLA20K , PEG-block-poly(lactide-co-glycolide) (PEG5K -b-PLGA20K ), and PEG-block-polycaprolactone (PEG5K -b-PCL20K ), by tuning the flow conditions for each block copolymer. Further, the automated CJM was used to produce model nanotherapeutics in a reproducible manner without user intervention. Finally, NPs produced with the automated CJM were used to scale the formation of injectable polymer-nanoparticle (PNP) hydrogels, without modifying the mechanical properties of the PNP gel. In conclusion, the automated CJM enabled stable, tunable, and continuous production of polymeric NPs, which are needed for the scale-up and translation of this important class of biomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...