Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 55(3): 467-76, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14987945

RESUMO

The global distribution and high stability of some haloacetic acids (HAAs) has prompted concern that they will tend to accumulate in surface waters and pose threats to humans and the ecosystem. It is important to study the degradation pathways of HAAs in aqueous systems to understand their ecotoxicological effects. Previous studies involving thermal degradation reactions show relatively long lifetimes for HAAs in the natural environment. Photolysis and photocatalytic dissociation are potentially efficient routes for the degradation of HAAs such as trichloroacetic acid to hydrochloric acid, carbon dioxide and chloroform, although such processes are poorly understood in surface waters. In our present study, we have used light to degrade the HAAs in the presence of titanium dioxide suspensions. All chloro and bromo HAAs degrade in photocatalysis experiments and the rate of degradation is directly proportional to the number of halogen atoms in the acid molecule. The half-lives of the HAAs from the photodegradation at 15 degrees C in the presence of suspended titanium dioxide photocatalyst are 8, 14, 83 days for the tri-, di- and mono-bromoacetic acids. Tri-, di- and mono-chloroacectic acids have half-lives of 6, 10 and 42 days respectively. The mixed bromochloro and chlorodifluoroacetic acids degrade with half-lives of 18 and 42 days respectively. Our results therefore suggest that the photocatalytic process can provide an additional degradation pathway for the HAAs in natural waters.


Assuntos
Acetatos/química , Halogênios/química , Fotólise , Purificação da Água/métodos , Água/química , Cinética , Temperatura , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...