Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 285(13): 9327-9338, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20100833

RESUMO

During immunoglobulin heavy chain (Igh) V(D)J recombination, D to J precedes V to DJ recombination in an ordered manner, controlled by differential chromatin accessibility of the V and DJ regions and essential for correct antibody assembly. However, with the exception of the intronic enhancer Emu, which regulates D to J recombination, cis-acting regulatory elements have not been identified. We have assembled the sequence of a strategically located 96-kb V-D intergenic region in the mouse Igh and analyzed its activity during lymphocyte development. We show that Emu-dependent D antisense transcription, proposed to open chromatin before D to J recombination, extends into the V-D region for more than 30 kb in B cells before, during, and after V(D)J recombination and in T cells but terminates 40 kb from the first V gene. Thus, subsequent V antisense transcription before V to DJ recombination is actively prevented and must be independently activated. To find cis-acting elements that regulate this differential chromatin opening, we identified six DNase I-hypersensitive sites (HSs) in the V-D region. One conserved HS upstream of the first D gene locally regulates D genes. Two further conserved HSs near the D region mark a sharp decrease in antisense transcription, and both HSs bind CTCF in vivo. Further, they both possess enhancer-blocking activity in vivo. Thus, we propose that they are enhancer-blocking insulators preventing Emu-dependent chromatin opening extending into the V region. Thus, they are the first elements identified that may control ordered V(D)J recombination and correct assembly of antibody genes.


Assuntos
Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Recombinação Genética , Alelos , Animais , Células da Medula Óssea/citologia , Cromatina/metabolismo , Biologia Computacional/métodos , DNA Intergênico/genética , Rearranjo Gênico , Genes de Cadeia Pesada de Imunoglobulina , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Modelos Imunológicos , Oligonucleotídeos Antissenso/genética , Regiões Promotoras Genéticas , Linfócitos T/metabolismo
2.
J Mol Biol ; 395(5): 937-49, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19962994

RESUMO

The eukaryotic SIN3 protein is the central component of the evolutionarily conserved multisubunit SIN3 complex that has roles in regulating gene expression and genome stability. Here we characterise the structure of the SIN3 protein in higher plants through the analysis of SNL1 (SIN3-LIKE1), SNL2, SNL3, SNL4, SNL5 and SNL6, a family of six SIN3 homologues in Arabidopsis thaliana. In an Arabidopsis-protoplast beta-glucuronidase reporter gene assay, as well as in a heterologous yeast repression assay, full-length SNL1 was shown to repress transcription in a histone-deacetylase-dependent manner, demonstrating the conserved nature of SIN3 function. Yeast two-hybrid screening identified a number of DNA binding proteins each containing a single Myb domain that included the Arabidopsis ALWAYS EARLY proteins AtALY2 and AtALY3, and two telomere binding proteins AtTBP1 and AtTRP2/TRFL1 as SNL1 partners, suggesting potential functions for SNL1 in development and telomere maintenance. The interaction with telomere-binding protein 1 was found to be mediated through the well-defined paired amphipathic helix domain PAH2. In contrast, the AtALY2 interaction was mediated through the PAH3 domain of SNL1, which is structurally distinct from PAH1 and PAH2, suggesting that evolution of this domain to a more novel structural motif has occurred. These findings support a diverse role of SNL1 in the regulation of transcription and genome stability.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/química , Complexo Correpressor Histona Desacetilase e Sin3/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Primers do DNA/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes de Plantas , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Filogenia , Plantas Geneticamente Modificadas , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Complexo Correpressor Histona Desacetilase e Sin3/genética , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
3.
Mol Biosyst ; 4(8): 790-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18633479

RESUMO

Cellular identity is determined by the switching on and off of lineage-specific genes. This dynamic process is regulated by a highly co-ordinated series of chromatin remodelling mechanisms that control DNA accessibility to facilitate transcription, replication and recombination. The identity of an individual B-lymphocyte is defined by the expression of a unique antibody protein, composed of two identical immunoglobulin heavy and two identical light chain polypeptides, which recognize a single foreign antigen with high specificity. However, the mammalian adaptive immune system requires an enormous variety of antibody-expressing B cells to combat the millions of foreign antigens it may encounter. This diversity is generated primarily at the multigene immunoglobulin loci by V(D)J recombination, a specialised form of DNA recombination in which numerous variable (V), diversity (D) and joining (J) genes are cut and pasted together in a strict order to allow shuffling of immunoglobulin genes. The mouse immunoglobulin heavy chain (Igh) locus is the largest known multigene locus. It spans approximately 3 Mb and comprises more than 200 genes. Its size and complexity pose an enormous logistic challenge to the chromatin remodelling machinery, but recent major advances in our understanding of how the 200 genes are shuffled have begun to reveal an exquisitely co-ordinated set of chromatin remodelling mechanisms which exploit every aspect of nuclear dynamics, and provide a global view of multigene regulation. This review will explore the numerous processes implicated in opening up and positioning of the locus to enable shuffling of the Igh locus genes, including non-coding RNA transcription, histone modifications, transcription factors, nuclear relocation and locus contraction.


Assuntos
Montagem e Desmontagem da Cromatina , Rearranjo Gênico de Cadeia Pesada de Linfócito B , Genes de Imunoglobulinas , Cadeias Pesadas de Imunoglobulinas/genética , Animais , Núcleo Celular/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/metabolismo , Nucleossomos/metabolismo , Recombinação Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
Mol Cell Biol ; 27(15): 5306-15, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17526732

RESUMO

Transcription corepressors are general regulators controlling the expression of genes involved in multiple signaling pathways and developmental programs. Repression is mediated through mechanisms including the stabilization of a repressive chromatin structure over control regions and regulation of Mediator function inhibiting RNA polymerase II activity. Using whole-genome arrays we show that the Arabidopsis thaliana corepressor LEUNIG, a member of the GroTLE transcription corepressor family, regulates the expression of multiple targets in vivo. LEUNIG has a role in the regulation of genes involved in a number of different physiological processes including disease resistance, DNA damage response, and cell signaling. We demonstrate that repression of in vivo LEUNIG targets is achieved through histone deacetylase (HDAC)-dependent and -independent mechanisms. HDAC-dependent mechanisms involve direct interaction with HDA19, a class 1 HDAC, whereas an HDAC-independent repression activity involves interactions with the putative Arabidopsis Mediator components AtMED14/SWP and AtCDK8/HEN3. We suggest that changes in chromatin structure coupled with regulation of Mediator function are likely to be utilized by LEUNIG in the repression of gene transcription.


Assuntos
Proteínas de Arabidopsis/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Quinase 8 Dependente de Ciclina , Flores/metabolismo , Ligação Proteica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...