Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 11(2): 243-250, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35574776

RESUMO

Organic electrochemical transistors (OECTs) are an emerging platform for bioelectronic applications. Significant effort has been placed in designing advanced polymers that simultaneously transport both charge and ions (i.e., macromolecules that are mixed conductors). However, the considerations for mixed organic conductors are often different from the established principles that are well-known in the solid-state organic electronics field; thus, the discovery of new OECT macromolecular systems is highly desired. Here, we demonstrate a new materials system by blending a radical polymer (i.e., a macromolecule with a nonconjugated backbone and with stable open-shell sites at its pendant group) with a frequently used conjugated polymer. Specifically, poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl) (PTEO) was blended with poly(3-hexylthiophene) (P3HT) to create thin films with distinct closed-shell and open-shell domains. Importantly, the sharp and unique oxidation-reduction (redox) potential associated with the radical moieties of the PTEO chain provided a distinct actuation feature to the blended films that modulated the ionic transport of the OECT devices. In turn, this led to controlled regulation of the doping of the P3HT phase in the composite film. By decoupling the ionic and electronic transport into two distinct phases and by using an ion transport phase with well-controlled redox activity, never-before-seen performance for a P3HT-based OECT was observed. That is, at loadings as low as 5% PTEO (by weight) OECTs achieved figure-of-merit (i.e., µC*) values >150 F V-1 cm-1 s-1, which place the performance on the same order as state-of-the-art conjugated polymers despite the relatively common conjugated macromolecular moiety implemented. As such, this effort presents a design platform by which to readily create a tailored OECT response through strategic macromolecular selection and polymer processing.


Assuntos
Polímeros , Transistores Eletrônicos , Íons , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...