Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 35(4): 658-662, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38286823

RESUMO

The quality of data in charge detection mass spectrometry depends on accurate determination of ion charge. While the method of selective temporal overview of resonant ions (STORI) has proven to be highly enabling for determining the charge of ions that survive for variable amounts of time, it assumes that the ion frequency exactly matches the frequency being used in the calculation. Any mismatches result in low charge estimates. To address this, the misSTORI method was developed to correct these discrepancies. This can significantly reduce the charge measurement errors for samples with unstable masses. As an example, the misSTORI approach can eliminate a 5.7% charge determination error for a VP3-only AAV capsid that shifts 25 ppm in mass.

2.
J Am Soc Mass Spectrom ; 34(12): 2625-2629, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38011219

RESUMO

Collision cross section (CCS) measurements determined by ion mobility spectrometry (IMS) provide useful information about gas-phase protein structure that is complementary to mass analysis. Methods for determining CCS without a dedicated IMS system have been developed for Fourier transform mass spectrometry (FT-MS) platforms by measuring the signal decay during detection. Individual ion mass spectrometry (I2MS) provides charge detection and measures ion lifetimes across the length of an FT-MS detection event. By tracking lifetimes for entire ion populations, we demonstrate simultaneous determination of charge, mass, and CCS for proteins and complexes ranging from ∼8 to ∼232 kDa.


Assuntos
Espectrometria de Mobilidade Iônica , Proteínas , Espectrometria de Massas/métodos , Proteínas/química , Espectrometria de Mobilidade Iônica/métodos
3.
Phys Chem Chem Phys ; 22(46): 27364-27384, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33231243

RESUMO

We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of Er ∼ 0.01-10 eV. We used photodetachment of C- to produce a pure beam of atomic C in the ground electronic 3P term, with statistically populated fine-structure levels. The H2+ and D2+ were formed in an electron impact ionization source, with well known vibrational and rotational distributions. The experimental work is complemented by a theoretical study of the CH2+ electronic system in the reactant and product channels, which helps to clarify the possible reaction mechanisms underlying the ICS measurements. Our measurements provide evidence that the reactions are barrierless and exoergic. They also indicate the apparent absence of an intermolecular isotope effect, to within the total experimental uncertainties. Capture models, taking into account either the charge-induced dipole interaction potential or the combined charge-quadrupole and charge-induced dipole interaction potentials, produce reaction cross sections that lie a factor of ∼4 above the experimental results. Based on our theoretical study, we hypothesize that the reaction is most likely to proceed adiabatically through the 14A' and 14A'' states of CH2+via the reaction C(3P) + H2+(2Σ+g) → CH+(3Π) + H(2S). We also hypothesize that at low collision energies only H2+(v ≤ 2) and D2+(v ≤ 3) contribute to the titular reactions, due to the onset of dissociative charge transfer for higher vibrational v levels. Incorporating these assumptions into the capture models brings them into better agreement with the experimental results. Still, for energies ⪅0.1 eV where capture models are most relevant, the modified charge-induced dipole model yields reaction cross sections with an incorrect energy dependence and lying ∼10% below the experimental results. The capture cross section obtained from the combined charge-quadrupole and charge-induced dipole model better matches the measured energy dependence but lies ∼30-50% above the experimental results. These findings provide important guidance for future quasiclassical trajectory and quantum mechanical treatments of this reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...