Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 10(12): 4315-4321, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145168

RESUMO

We report on the mechanism of enhancing the luminance and external quantum efficiency (EQE) by developing nanostructured channels in hybrid (organic/inorganic) light-emitting transistors (HLETs) that combine a solution-processed oxide and a polymer heterostructure. The heterostructure comprised two parts: (i) the zinc tin oxide/zinc oxide (ZTO/ZnO), with and without ZnO nanowires (NWs) grown on the top of the ZTO/ZnO stack, as the charge transport layer and (ii) a polymer Super Yellow (SY, also known as PDY-132) layer as the light-emitting layer. Device characterization shows that using NWs significantly improves luminance and EQE (≈1.1% @ 5000 cd m-2) compared to previously reported similar HLET devices that show EQE < 1%. The size and shape of the NWs were controlled through solution concentration and growth time, which also render NWs to have higher crystallinity. Notably, the size of the NWs was found to provide higher escape efficiency for emitted photons while offering lower contact resistance for charge injection, which resulted in the improved optical performance of HLETs. These results represent a significant step forward in enabling efficient and all-solution-processed HLET technology for lighting and display applications.

2.
ACS Appl Energy Mater ; 6(21): 10883-10896, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38020741

RESUMO

Increasing the power conversion efficiency (PCE) of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has remained challenging over the past decade, in part due to open-circuit voltage (VOC)-limiting defect states at the absorber/buffer interface. Previously, we found that substituting the conventional CdS buffer layer with In2S3 in CZTSSe devices fabricated from nanoparticle inks produced an increase in the apparent doping density of the CZTSSe film and a higher built-in voltage arising from a more favorable energy-band alignment at the absorber/buffer interface. However, any associated gain in VOC was negated by the introduction of photoactive defects at the interface. This present study incorporates a hybrid Cd/In dual buffer in CZTSSe devices that demonstrate an average relative increase of 11.5% in PCE compared to CZTSSe devices with a standard CdS buffer. Current density-voltage analysis using a double-diode model revealed the presence of (i) a large recombination current in the quasi-neutral region (QNR) of the CZTSSe absorber in the standard CdS-based device, (ii) a large recombination current in the space-charge region (SCR) of the hybrid buffer CZTSSe-In2S3-CdS device, and (iii) reduced recombination currents in both the QNR and SCR of the CZTSSe-CdS-In2S3 device. This accounts for a notable 9.0% average increase in the short-circuit current density (JSC) observed in CZTSSe-CdS-In2S3 in comparison to the CdS-only CZTSSe solar cells. Energy-dispersive X-ray, secondary-ion mass spectroscopy, and grazing-incidence X-ray diffraction compositional analysis of the CZTSSe layer in the three types of kesterite solar cells suggest that there is diffusion of elemental In and Cd into the absorbers with a hybrid buffer. Enhanced Cd diffusion concomitant with a double postdeposition heat treatment of the hybrid buffer layers in the CZTSSe-CdS-In2S3 device increases carrier collection and extraction and boosts JSC. This is evidenced by electron-beam-induced current measurements, where higher current generation and collection near to the p-n junction is observed, accounting for the increase in JSC in this device. It is expected that optimization of the heat treatment of the hybrid buffer layers will lead to further improvements in the device performance.

3.
Biomater Res ; 27(1): 93, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749659

RESUMO

BACKGROUND: Biofilm formation on medical device surfaces is a persistent problem that shelters bacteria and encourages infections and implant rejection. One promising approach to tackle this problem is to coat the medical device with an antimicrobial material. In this work, for the first time, we impart antimicrobial functionality to Ti3Au intermetallic alloy thin film coatings, while maintaining their superior mechanical hardness and biocompatibility. METHODS: A mosaic Ti sputtering target is developed to dope controlled amounts of antimicrobial elements of Ag and Cu into a Ti3Au coating matrix by precise control of individual target power levels. The resulting Ti3Au-Ag/Cu thin film coatings are then systematically characterised for their structural, chemical, morphological, mechanical, corrosion, biocompatibility-cytotoxicity and antimicrobial properties. RESULTS: X-ray diffraction patterns reveal the formation of a super hard ß-Ti3Au phase, but the thin films undergo a transition in crystal orientation from (200) to (211) with increasing Ag concentration, whereas introduction of Cu brings no observable changes in crystal orientation. Scanning and transmission electron microscopy analysis show the polyhedral shape of the Ti3Au crystal but agglomeration of Ag particles between crystal grains begins at 1.2 at% Ag and develops into large granules with increasing Ag concentration up to 4.1 at%. The smallest doping concentration of 0.2 at% Ag raises the hardness of the thin film to 14.7 GPa, a 360% improvement compared to the ∼4 GPa hardness of the standard Ti6Al4V base alloy. On the other hand, addition of Cu brings a 315-330% improvement in mechanical hardness of films throughout the entire concentration range of 0.5-7.1 at%. The thin films also show good electrochemical corrosion resistance and a > tenfold reduction in wear rate compared to Ti6Al4V alloy. All thin film samples exhibit very safe cytotoxic profiles towards L929 mouse fibroblast cells when analysed with Alamar blue assay, with ion leaching concentrations lower than 0.2 ppm for Ag and 0.08 ppm for Cu and conductivity tests reveal the positive effect of increased conductivity on myogenic differentiation. Antimicrobial tests show a drastic reduction in microbial survival over a short test period of < 20 min for Ti3Au films doped with Ag or Cu concentrations as low as 0.2-0.5 at%. CONCLUSION: Therefore, according to these results, this work presents a new antimicrobial Ti3Au-Ag/Cu coating material with excellent mechanical performance with the potential to develop wear resistant medical implant devices with resistance to biofilm formation and bacterial infection.

4.
Bioact Mater ; 15: 426-445, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35386358

RESUMO

The lifetime of orthopaedic implants can be extended by coating the softer Ti6Al4V alloy with harder biocompatible thin films. In this work, thin films of Ti(1-x)Au(x) are grown on Ti6Al4V and glass substrates by magnetron sputtering in the entire x = 0-1 range, before their key biomechanical properties are performance tuned by thermal activation. For the first time, we explore the effect of in-situ substrate heating versus ex-situ post-deposition heat-treatment, on development of mechanical and biocompatibility performance in Ti-Au films. A ∼250% increase in hardness is achieved for Ti-Au films compared to bulk Ti6Al4V and a ∼40% improvement from 8.8 GPa as-grown to 11.9 and 12.3 GPa with in-situ and ex-situ heat-treatment respectively, is corelated to changes in structural, morphological and chemical properties, providing insights into the origins of super-hardness in the Ti rich regions of these materials. X-ray diffraction reveals that as-grown films are in nanocrystalline states of Ti-Au intermetallic phases and thermal activation leads to emergence of mechanically hard Ti-Au intermetallics, with films prepared by in-situ substrate heating having enhanced crystalline quality. Surface morphology images show clear changes in grain size, shape and surface roughness following thermal activation, while elemental analysis reveals that in-situ substrate heating is better for development of oxide free Ti3Au ß-phases. All tested Ti-Au films are non-cytotoxic against L929 mouse fibroblast cells, while extremely low leached ion concentrations confirm their biocompatibility. With peak hardness performance tuned to >12 GPa and excellent biocompatibility, Ti-Au films have potential as a future coating technology for load bearing medical implants.

5.
Langmuir ; 36(45): 13396-13407, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33141589

RESUMO

The concept of slippery lubricant-infused surfaces has shown promising potential in antifouling for controlling detrimental biofilm growth. In this study, nontoxic silicone oil was either impregnated into porous surface nanostructures, referred to as liquid-infused surfaces (LIS), or diffused into a polydimethylsiloxane (PDMS) matrix, referred to as a swollen PDMS (S-PDMS), making two kinds of slippery surfaces. The slippery lubricant layers have extremely low contact angle hysteresis, and both slippery surfaces showed superior antiwetting performances with droplets bouncing off or rolling transiently after impacting the surfaces. We further demonstrated that water droplets can remove dust from the slippery surfaces, thus showing a "cleaning effect". Moreover, "coffee-ring" effects were inhibited on these slippery surfaces after droplet evaporation, and deposits could be easily removed. The clinically biofilm-forming species P. aeruginosa (as a model system) was used to further evaluate the antifouling potential of the slippery surfaces. The dried biofilm stains could still be easily removed from the slippery surfaces. Additionally, both slippery surfaces prevented around 90% of bacterial biofilm growth after 6 days compared to the unmodified control PDMS surfaces. This investigation also extended across another clinical pathogen, S. epidermidis, and showed similar results. The antiwetting and antifouling analysis in this study will facilitate the development of more efficient slippery platforms for controlling biofouling.

6.
ACS Appl Nano Mater ; 3(8): 7781-7788, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32954224

RESUMO

Developing highly efficient and stable photoelectrochemical (PEC) water-splitting electrodes via inexpensive, liquid phase processing is one of the key challenges for the conversion of solar energy into hydrogen for sustainable energy production. ZnO represents one the most suitable semiconductor metal oxide alternatives because of its high electron mobility, abundance, and low cost, although its performance is limited by its lack of absorption in the visible spectrum and reduced charge separation and charge transfer efficiency. Here, we present a solution-processed water-splitting photoanode based on Co-doped ZnO nanorods (NRs) coated with a transparent functionalizing metal-organic framework (MOF). The light absorption of the ZnO NRs is engineered toward the visible region by Co-doping, while the MOF significantly improves the stability and charge separation and transfer properties of the NRs. This synergetic combination of doping and nanoscale surface functionalization boosts the current density and functional lifetime of the photoanodes while achieving an unprecedented incident photon to current efficiency (IPCE) of 75% at 350 nm, which is over 2 times that of pristine ZnO. A theoretical model and band structure for the core-shell nanostructure is provided, highlighting how this nanomaterial combination provides an attractive pathway for the design of robust and highly efficient semiconductor-based photoanodes that can be translated to other semiconducting oxide systems.

7.
ACS Appl Mater Interfaces ; 12(34): 38070-38075, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32804480

RESUMO

The use of CdSe layers has recently emerged as a route to improving CdTe photovoltaics through the formation of a CdTe(1-x)Sex (CST) phase. However, the extent of the Se diffusion and the influence it has on the CdTe grain structure has not been widely investigated. In this study, we used transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD) to investigate the impact of growing CdTe layers on three different window layer structures CdS, CdSe, and CdS/CdSe. We demonstrate that extensive intermixing occurs between CdS, CdSe, and CdTe layers resulting in large voids forming at the front interface, which will degrade device performance. The use of CdS/CdSe bilayer structures leads to the formation of a parasitic CdS(1-x)Sex phase. Following removal of CdS from the cell structure, effective CdTe and CdSe intermixing was achieved. However, the use of sputtered CdSe had limited success in producing Se grading in CST.

8.
Soft Matter ; 16(32): 7613-7623, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32728681

RESUMO

Surface topography designed to achieve spatial segregation has shown promise in delaying bacterial attachment and biofilm growth. However, the underlying mechanisms linking surface topography to the inhibition of microbial attachment and growth still remain unclear. Here, we investigated bacterial attachment, cell alignment and biofilm formation of Pseudomonas aeruginosa on periodic nano-pillar surfaces with different pillar spacing. Using fluorescence and scanning electron microscopy, bacteria were shown to align between the nanopillars. Threadlike structures ("bacterial nanotubes") protruded from the majority of bacterial cells and appeared to link cells directly with the nanopillars. Using ΔfliM and ΔpilA mutants lacking flagella or pili, respectively, we further demonstrated that cell alignment behavior within nano-pillars is independent of the flagella or pili. The presence of bacteria nanotubes was found in all cases, and is not linked to the expression of flagella or pili. We propose that bacterial nanotubes are produced to aid in cell-surface or cell-cell connections. Nano-pillars with smaller spacing appeared to enhance the extension and elongation of bacterial nanotube networks. Therefore, nano-pillars with narrow spacing can be easily overcome by nanotubes that connect isolated bacterial aggregates. Such nanotube networks may aid cell-cell communication, thereby promoting biofilm development.


Assuntos
Fímbrias Bacterianas , Nanotubos , Aderência Bacteriana , Biofilmes , Flagelos , Pseudomonas aeruginosa
9.
Materials (Basel) ; 13(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935896

RESUMO

We report the synthesis of organometal halide perovskites by milling CH3NH3I and PbI2 directly with an Al2O3 scaffold to create hybrid Al2O3-CH3NH3PbI3 perovskites, without the use of organic capping ligands that otherwise limit the growth of the material in the three dimensions. Not only does this improve the ambient stability of perovskites in air (100 min versus 5 min for dimethylformamide (DMF)-processed material), the method also uses much fewer toxic solvents (terpineol versus dimethylformamide). This has been achieved by solid-state reaction of the perovskite precursors to produce larger perovskite nanoparticles. The resulting hybrid perovskite-alumina particles effectively improve the hydrophobicity of the perovskite phase whilst the increased thermal mass of the Al2O3 increases the thermal stability of the organic cation. Raman data show the incorporation of Al2O3 shifts the perovskite spectrum, suggesting the formation of a hybrid 3D mesoporous stack. Laser-induced current mapping (LBIC) and superoxide generation measurements, coupled to thermogravimetric analysis, show that these hybrid perovskites demonstrate slightly improved oxygen and thermal stability, whilst ultra-fast X-ray diffraction studies using synchrotron radiation show substantial (20×) increase in humidity stability. Overall, these data show considerably improved ambient stability of the hybrid perovskites compared to the solution-processed material.

10.
Langmuir ; 35(45): 14670-14680, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31630525

RESUMO

A variety of natural surfaces exhibit antibacterial properties; as a result, significant efforts in the past decade have been dedicated toward fabrication of biomimetic surfaces that can help control biofilm growth. Examples of such surfaces include rose petals, which possess hierarchical structures like the micropapillae measuring tens of microns and nanofolds that range in the size of 700 ± 100 nm. We duplicated the natural structures on rose petal surfaces via a simple UV-curable nanocasting technique and tested the efficacy of these artificial surfaces in preventing biofilm growth using clinically relevant bacteria strains. The rose petal-structured surfaces exhibited hydrophobicity (contact angle (CA) ≈ 130.8° ± 4.3°) and high CA hysteresis (∼91.0° ± 4.9°). Water droplets on rose petal replicas evaporated following the constant contact line mode, indicating the likely coexistence of both Cassie and Wenzel states (Cassie-Baxter impregnating the wetting state). Fluorescence microscopy and image analysis revealed the significantly lower attachment of Staphylococcus epidermidis (86.1 ± 6.2% less) and Pseudomonas aeruginosa (85.9 ± 3.2% less) on the rose petal-structured surfaces, compared with flat surfaces over a period of 2 h. An extensive biofilm matrix was observed in biofilms formed by both species on flat surfaces after prolonged growth (several days), but was less apparent on rose petal-biomimetic surfaces. In addition, the biomass of S. epidermidis (63.2 ± 9.4% less) and P. aeruginosa (76.0 ± 10.0% less) biofilms were significantly reduced on the rose petal-structured surfaces, in comparison to the flat surfaces. By comparing P. aeruginosa growth on representative unitary nanopillars, we demonstrated that hierarchical structures are more effective in delaying biofilm growth. The mechanisms are two-fold: (1) the nanofolds across the hemispherical micropapillae restrict initial attachment of bacterial cells and delay the direct contact of cells via cell alignment and (2) the hemispherical micropapillae arrays isolate bacterial clusters and inhibit the formation of a fibrous network. The hierarchical features on rose petal surfaces may be useful for developing strategies to control biofilm formation in medical and industrial contexts.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Rosa/química , Staphylococcus epidermidis/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus epidermidis/citologia , Staphylococcus epidermidis/crescimento & desenvolvimento , Propriedades de Superfície
11.
Nanomaterials (Basel) ; 8(5)2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29693560

RESUMO

CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111) oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.

12.
Sci Rep ; 8(1): 1071, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348582

RESUMO

Titanium-based implants are ubiquitous in the healthcare industries and often suffer from bacterial attachment which results in infections. An innovative method of reducing bacterial growth is to employ nanostructures on implant materials that cause contact-dependent cell death by mechanical rupture of bacterial cell membranes. To achieve this, we synthesized nanostructures with different architectures on titanium surfaces using hydrothermal treatment processes and then examined the growth of Staphylococcus epidermidis on these surfaces. The structure obtained after a two-hour hydrothermal treatment (referred to as spear-type) showed the least bacterial attachment at short times but over a period of 6 days tended to support the formation of thick biofilms. By contrast, the structure obtained after a three-hour hydrothermal treatment (referred to as pocket-type) was found to delay biofilm formation up to 6 days and killed 47% of the initially attached bacteria by penetrating or compressing the bacteria in between the network of intertwined nano-spears. The results point to the efficacy of pocket-type nanostructure in increasing the killing rate of individual bacteria and potentially delaying longer-term biofilm formation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Nanoestruturas/química , Nanoestruturas/microbiologia , Staphylococcus epidermidis/fisiologia , Titânio/química , Antibacterianos/química , Aderência Bacteriana , Membrana Celular/ultraestrutura , Viabilidade Microbiana , Nanoestruturas/ultraestrutura , Propriedades de Superfície
13.
Nanoscale ; 8(15): 8236-44, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27031573

RESUMO

Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technological challenge calls for the development of ultra-fast, high-throughput and low-cost fabrication techniques. Laser processing, accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability. In the present work we take advantage of the ability to tune the laser wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, and demonstrate the utilization of different optical absorption mechanisms that are size-selective and enable the fabrication of pre-determined patterns of metal nanostructures. Thus, we overcome the greatest challenge of Laser Induced Self Assembly by combining simultaneously large-scale character with atomic-scale precision. The proposed process can serve as a platform that will stimulate further progress towards the engineering of plasmonic devices.

14.
Nat Commun ; 6: 7628, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26194625

RESUMO

Minerals stabilize organic carbon (OC) in sediments, thereby directly affecting global climate at multiple scales, but how they do it is far from understood. Here we show that manganese oxide (Mn oxide) in a water treatment works filter bed traps dissolved OC as coatings build up in layers around clean sand grains at 3%w/wC. Using spectroscopic and thermogravimetric methods, we identify two main OC fractions. One is thermally refractory (>550 °C) and the other is thermally more labile (<550 °C). We postulate that the thermal stability of the trapped OC is due to carboxylate groups within it bonding to Mn oxide surfaces coupled with physical entrapment within the layers. We identify a significant difference in the nature of the surface-bound OC and bulk OC . We speculate that polymerization reactions may be occurring at depth within the layers. We also propose that these processes must be considered in future studies of OC in natural systems.

15.
BDJ Open ; 1: 15003, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-29607057

RESUMO

OBJECTIVES/AIMS: To explore the ultrastructure of subgingival dental plaque using high-resolution field emission scanning electron microscopy (FE-SEM) and to investigate whether extracellular DNA (eDNA) could be visualised in ex vivo samples. MATERIALS AND METHODS: Ten patients were recruited who fulfilled the inclusion criteria (teeth requiring extraction with radiographic horizontal bone loss of over 50% and grade II/III mobility). In total, 12 teeth were extracted using a minimally traumatic technique. Roots were sectioned using a dental air turbine handpiece, under water cooling to produce 21 samples. Standard fixation and dehydration protocols were followed. For some samples, gold-labelled anti-DNA antibodies were applied before visualising biofilms by FE-SEM. RESULTS: High-resolution FE-SEMs of subgingival biofilm were obtained in 90% of the samples. The sectioning technique left dental plaque biofilms undisturbed. Copious amounts of extracellular material were observed in the plaque, which may have been eDNA as they had a similar appearance to labelled eDNA from in vitro studies. There was also evidence of membrane vesicles and open-ended tubular structures. Efforts to label eDNA with immune-gold antibodies were unsuccessful and eDNA was not clearly labelled. CONCLUSIONS: High-resolution FE-SEM images were obtained of undisturbed subgingival ex vivo dental plaque biofilms. Important structural features were observed including extracellular polymeric material, vesicles and unusual open tubule structures that may be remnants of lysed cells. The application of an eDNA immune-gold-labelling technique, previously used successfully in in vitro samples, did not clearly identify eDNA in ex vivo samples. Further studies are needed to characterise the molecular composition of the observed extracellular matrix material.

16.
Exp Eye Res ; 120: 10-4, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24341990

RESUMO

Fibroblast growth factors play a key role in regulating lens epithelial cell proliferation and differentiation via an anteroposterior gradient that exists between the aqueous and vitreous humours. FGF-2 is the most important for lens epithelial cell proliferation and differentiation. It has been proposed that the presentation of FGF-2 to the lens epithelial cells involves the lens capsule as a source of matrix-bound FGF-2. Here we used immunogold labelling to measure the matrix-bound FGF-2 gradient on the inner surface of the lens capsule in flat-mounted preparations to visualize the FGF-2 available to lens epithelial cells. We also correlated FGF-2 levels with levels of its matrix-binding partner perlecan, a heparan sulphate proteoglycan (HSPG) and found the levels of both to be highest at the lens equator. These also coincided with increased levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (pERK1/2) in lens epithelial cells that localised to condensed chromosomes of epithelial cells that were Ki-67 positive. The gradient of matrix-bound FGF-2 (anterior pole: 3.7 ± 1.3 particles/µm2; equator: 8.2 ± 1.9 particles/µm2; posterior pole: 4 ± 0.9 particles/µm2) and perlecan (anterior pole: 2.1 ± 0.4 particles/µm2; equator: 5 ± 2 particles/µm2; posterior pole: 1.9 ± 0.7 particles/µm2) available at the inner lens capsule surface was measured for the bovine lens. These data support the anteroposterior gradient hypothesis and provide the first measurement of the gradient for an important morphogen and its HSPG partner, perlecan, at the epithelial cell-lens capsule interface.


Assuntos
Células Epiteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Cápsula do Cristalino/metabolismo , Animais , Bovinos , Colágeno Tipo IV/metabolismo , Imuno-Histoquímica , Cápsula do Cristalino/ultraestrutura , Microscopia Eletrônica de Varredura , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação
17.
Part Fibre Toxicol ; 9: 44, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23164071

RESUMO

BACKGROUND: Respirable crystalline silica (RCS) continues to pose a risk to human health worldwide. Its variable toxicity depends on inherent characteristics and external factors which influence surface chemistry. Significant population exposure to RCS occurs during volcanic eruptions, where ashfall may cover hundreds of square km and exposure may last years. Occupational exposure also occurs through mining of volcanic deposits. The primary source of RCS from volcanoes is through collapse and fragmentation of lava domes within which cristobalite is mass produced. After 30 years of research, it is still not clear if volcanic ash is a chronic respiratory health hazard. Toxicological assays have shown that cristobalite-rich ash is less toxic than expected. We investigate the reasons for this by determining the physicochemical/structural characteristics which may modify the pathogenicity of volcanic RCS. Four theories are considered: 1) the reactivity of particle surfaces is reduced due to co-substitutions of Al and Na for Si in the cristobalite structure; 2) particles consist of aggregates of cristobalite and other phases, restricting the surface area of cristobalite available for reactions in the lung; 3) the cristobalite surface is occluded by an annealed rim; 4) dissolution of other volcanic particles affects the surfaces of RCS in the lung. METHODS: The composition of volcanic cristobalite crystals was quantified by electron microprobe and differences in composition assessed by Welch's two sample t-test. Sections of dome-rock and ash particles were imaged by scanning and transmission electron microscopy, and elemental compositions of rims determined by energy dispersive X-ray spectroscopy. RESULTS: Volcanic cristobalite contains up to 4 wt. % combined Al(2)O(3) and Na(2)O. Most cristobalite-bearing ash particles contain adhered materials such as feldspar and glass. No annealed rims were observed. CONCLUSIONS: The composition of volcanic cristobalite particles gives insight into previously-unconsidered inherent characteristics of silica mineralogy which may affect toxicity. The structural features identified may also influence the hazard of other environmentally and occupationally produced silica dusts. Current exposure regulations do not take into account the characteristics that might render the silica surface less harmful. Further research would facilitate refinement of the existing simple, mass-based silica standard by taking into account composition, allowing higher standards to be set in industries where the silica surface is modified.


Assuntos
Dióxido de Silício/toxicidade , Erupções Vulcânicas , Humanos , Microscopia Eletrônica de Varredura , Quartzo/análise , Dióxido de Silício/análise , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...