Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 56(4): 474-91, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16681212

RESUMO

Results from six continuous and semicontinuous black carbon (BC) and elemental carbon (EC) measurement methods are compared for ambient samples collected from December 2003 through November 2004 at the Fresno Supersite in California. Instruments included a multi-angle absorption photometer (MAAP; lambda = 670 nm); a dual-wavelength (lambda = 370 and 880 nm) aethalometer; seven-color (lambda = 370, 470, 520, 590, 660, 880, and 950 nm) aethalometers; the Sunset Laboratory carbon aerosol analysis field instrument; a photoacoustic light absorption analyzer (lambda = 1047 nm); and the R&P 5400 ambient carbon particulate monitor. All of these acquired BC or EC measurements over periods of 1 min to 1 hr. Twenty-four-hour integrated filter samples were also acquired and analyzed by the Interagency Monitoring of Protected Visual Environments (IMPROVE) thermal/optical reflectance carbon analysis protocol. Site-specific mass absorption efficiencies estimated by comparing light absorption with IMPROVE EC concentrations were 5.5 m2/g for the MAAP, 10 m2/g for the aethalometer at a wavelength of 880 nm, and 2.3 m2/g for the photoacoustic analyzer; these differed from the default efficiencies of 6.5, 16.6, and 5 m2/g, respectively. Scaling absorption by inverse wavelength did not provide equivalent light absorption coefficients among the instruments for the Fresno aerosol measurements. Ratios of light absorption at 370 nm to those at 880 nm from the aethalometer were nearly twice as high in winter as in summer. This is consistent with wintertime contributions from vehicle exhaust and from residential wood combustion, which is believed to absorb more shorter-wavelength light. To reconcile BC and EC measurements obtained by different methods, a better understanding is needed of the wavelength dependence of light-absorption and mass-absorption efficiencies and how they vary with different aerosol composition.


Assuntos
Poluentes Ocupacionais do Ar/análise , Carbono/análise , Monitoramento Ambiental/métodos , Filtração , Estações do Ano , Fatores de Tempo
2.
J Expo Sci Environ Epidemiol ; 16(1): 3-18, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16077742

RESUMO

Continuous measurements of particle number (PN), particle mass (PM(10)) and gaseous copollutants (NO(x), CO and O3) were obtained at eight sites (urban, suburban and remote) in Southern California during years 2002 and 2003 in support of University of Southern California Children's Health Study. We report the spatial and temporal variation of PNs and size distributions within these sites. Higher average total PN concentrations are found in winter (November to February), compared to summer (July to September) and spring (March to June) in all urban sites. Contribution of local vehicular emissions is most evident in cooler months, whereas effects of long-range transport of particles are enhanced during warmer periods. The particle size profile is most represented by a combination of the spatial effects, for example, sources, atmospheric processes and meteorological conditions prevalent at each location. Afternoon periods in the warmer months are characterized by elevated number concentrations that either coincide or follow a peak in ozone concentrations, suggesting the formation of new particles by photochemistry. Results show no meaningful correlation between PN and mass, indicating that mass based standards may not be effective in controlling ultrafine particles. The study of the impact of the Union worker's strike at port of Long Beach in October 2002 revealed statistically significant increase in PN concentrations in the 60-200 nm range (P<0.001), which are indicative of contributions of emissions from the idling ships at the port.


Assuntos
Poluentes Atmosféricos/análise , Proteção da Criança , Emissões de Veículos/análise , Atmosfera , California , Criança , Cidades , Monitoramento Ambiental , Humanos , Conceitos Meteorológicos , Tamanho da Partícula , Valores de Referência , Estações do Ano , Navios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...