Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 14(3): 653-657, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767741

RESUMO

Investigating whether changes within fish populations may result from harvesting requires a comprehensive approach, especially in more data-sparse northern regions. Our study took a three-pronged approach to investigate walleye population change by combining Indigenous knowledge (IK), phenotypic traits, and genomics. We thank Larson et al. (2020) for their critiques of our study; certainly, there are aspects of their critique that are warranted and merit further investigation. However, we argue that their critique is over-stated and misleading, primarily given that (a) one of three prongs of our research, IK, was dismissed in their assessment of our study's conclusions; (b) our Bayesian size-at-age modeling should help to mitigate sample size issues; (c) their re-analysis of our size-at-age data does not actually refute our results; (d) genomic changes that we observed are nascent; (e) the data file that Larson et al. (2020) used for their genomic re-analysis was not correct; and (f) criteria that Larson et al. (2020) use for their genomic re-analysis were not properly justified.

2.
Evol Appl ; 13(6): 1128-1144, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32684951

RESUMO

The extent and rate of harvest-induced genetic changes in natural populations may impact population productivity, recovery, and persistence. While there is substantial evidence for phenotypic changes in harvested fishes, knowledge of genetic change in the wild remains limited, as phenotypic and genetic data are seldom considered in tandem, and the number of generations needed for genetic changes to occur is not well understood. We quantified changes in size-at-age, sex-specific changes in body size, and genomic metrics in three harvested walleye (Sander vitreus) populations and a fourth reference population with low harvest levels over a 15-year period in Mistassini Lake, Quebec. We also collected Indigenous knowledge (IK) surrounding concerns about these populations over time. Using ~9,000 SNPs, genomic metrics included changes in population structure, neutral genomic diversity, effective population size, and signatures of selection. Indigenous knowledge revealed overall reductions in body size and number of fish caught. Smaller body size, a small reduction in size-at-age, nascent changes to population structure (population differentiation within one river and homogenization between two others), and signatures of selection between historical and contemporary samples reflected coupled phenotypic and genomic change in the three harvested populations in both sexes, while no change occurred in the reference population. Sex-specific analyses revealed differences in both body size and genomic metrics but were inconclusive about whether one sex was disproportionately affected. Although alternative explanations cannot be ruled out, our collective results are consistent with the hypothesis that genetic changes associated with harvesting may arise within 1-2.5 generations in long-lived wild fishes. This study thus demonstrates the need to investigate concerns about harvest-induced evolution quickly once they have been raised.

3.
BMC Evol Biol ; 18(1): 113, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021523

RESUMO

BACKGROUND: Populations that have repeatedly colonized novel environments are useful for studying the role of ecology in adaptive divergence - particularly if some individuals persist in the ancestral habitat. Such "contemporary ancestors" can be used to demonstrate the effects of selection by comparing phenotypic and genetic divergence between the derived population and their extant ancestors. However, evolution and demography in these "contemporary ancestors" can complicate inferences about the source (standing genetic variation, de novo mutation) and pace of adaptive divergence. Marine threespine stickleback (Gasterosteus aculeatus) have colonized freshwater environments along the Pacific coast of North America, but have also persisted in the marine environment. To what extent are marine stickleback good proxies of the ancestral condition? RESULTS: We sequenced > 5800 variant loci in over 250 marine stickleback from eight locations extending from Alaska to California, and phenotyped them for platedness and body shape. Pairwise FST varied from 0.02 to 0.18. Stickleback were divided into five genetic clusters, with a single cluster comprising stickleback from Washington to Alaska. Plate number, Eda, body shape, and candidate loci showed evidence of being under selection in the marine environment. Comparisons to a freshwater population demonstrated that candidate loci for freshwater adaptation varied depending on the choice of marine populations. CONCLUSIONS: Marine stickleback are structured into phenotypically and genetically distinct populations that have been evolving as freshwater stickleback evolved. This variation complicates their usefulness as proxies of the ancestors of freshwater populations. Lessons from stickleback may be applied to other "contemporary ancestor"-derived population studies.


Assuntos
Adaptação Fisiológica/genética , Organismos Aquáticos/genética , Variação Genética , Filogenia , Smegmamorpha/genética , Alaska , Animais , Sequência de Bases , California , Feminino , Água Doce , Frequência do Gene/genética , Genética Populacional , Genótipo , Geografia , Masculino , Oceano Pacífico , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética , Washington
4.
Curr Zool ; 62(1): 71-78, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29491893

RESUMO

Body size is a highly variable trait among geographically separated populations. Size-assortative reproductive isolation has been linked to recent adaptive radiations of threespine stickleback (Gasterosteus aculeatus) into freshwater, but the genetic basis of the commonly found size difference between anadromous and derived lacustrine sticklebacks has not been tested. We studied the genetic basis of size differences between recently diverging stickleback lineages in southwest Alaska using a common environment experiment. We crossed stickleback within one anadromous (Naknek River) and one lake (Pringle Lake) population and between the anadromous and two lake populations (Pringle and JoJo Lakes), and raised them in a salinity of 4-6 ppt. The F1 anadromous and freshwater forms differed significantly in size, whereas hybrids were intermediate or exhibited dominance toward the anadromous form. Additionally, the size of freshwater F1s differed from their wild counterparts, with within-population F1s from Pringle Lake growing larger than their wild counterparts, while there was no size difference between lab-raised and wild anadromous fish. Sexual dimorphism was always present in anadromous fish, but not in freshwater, and not always in the hybrid crosses. These results, along with parallel changes among anadromous and freshwater forms in other regions, suggest that this heritable trait is both plastic and may be under divergent and/or sexual selection.

5.
Mol Ecol Resour ; 11(3): 530-40, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21481211

RESUMO

Reconstructing the diets of pinnipeds by visually identifying prey remains recovered in faecal samples is challenging because of differences in digestion and passage rates of hard parts. Analysing the soft-matrix of faecal material using DNA-based techniques is an alternative means to identify prey species consumed, but published techniques are largely nonquantitative, which limits their usefulness for some applications. We further developed and validated a real-time PCR technique using species-specific mitochondrial DNA primers to quantify the proportion of prey in the diets of Steller sea lions (Eumetopias jubatus), a pinniped species thought to be facing significant diet related challenges in the North Pacific. We first demonstrated that the proportions of prey tissue DNA in mixtures of DNA isolated from four prey species could be estimated within a margin of ∼ 12% of the percent in the mix. These prey species included herring Clupea palasii, eulachon Thaleichthyes pacificus, squid Loligo opalescens and rosethorn rockfish Sebastes helvomaculatus. We then applied real-time PCR to DNA extracted from faecal samples obtained from Steller sea lions in captivity that were fed 11 different combinations of herring, eulachon, squid and Pacific ocean perch rockfish (Sebastes alutus), ranging from 7% to 75% contributions per meal (by wet weight). The difference between the average percentage estimated by real-time PCR and the percentage of prey consumed was generally <12% for all diets fed. Our findings indicate that real-time PCR of faecal DNA can detect the approximate relative quantity of prey consumed for complex diets and prey species, including cephalopods and fish.


Assuntos
Caniformia/fisiologia , Classificação/métodos , DNA/genética , DNA/isolamento & purificação , Ecologia/métodos , Fezes/química , Reação em Cadeia da Polimerase/métodos , Animais , Primers do DNA/genética , DNA Mitocondrial/genética , Comportamento Alimentar , Oceano Pacífico
6.
Genes Chromosomes Cancer ; 46(2): 118-29, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17099872

RESUMO

Loss of both RB1 alleles is rate limiting for development of retinoblastoma (RB), but genomic copy number gain or loss may impact oncogene(s) and tumor suppressor genes, facilitating tumor progression. We used quantitative multiplex polymerase chain reaction to profile "hot spot" genomic copy number changes for gain at 1q32.1, 6p22, and MYCN, and loss at 16q22 in 87 primary RB and 7 cell lines. Loss at 16q22 (48%) negatively associated with MYCN gain (18%) (Fisher's exact P = 0.031), gain at 1q32.1 (62%) positively associated with 6p "hot spot" gain (43%) (P = 0.033), and there was a trend for positive association between 1q and MYCN gain (P = 0.095). Cell lines had a higher frequency of MYCN amplification than primary tumors (29% versus 3%; P = 0.043). Novel high-level amplification of 1q32.1 in one primary tumor, confirmed by fluorescence in situ hybridization, strongly supports the presence of oncogene(s) in this region, possibly the mitotic kinesin, KIF14. Gene-specific quantitative multiplex polymerase chain reaction of candidate oncogenes at 1q32.1 (KIF14), 6p22 (E2F3 and DEK), and tumor suppressor genes at 16q22 (CDH11) and 17q21 (NGFR) showed the most common gene gains in RB to be KIF14 in cell lines (80%) and E2F3 in primary tumors (70%). The patterns of gain/loss were qualitatively different in 25 RB compared with 12 primary hepatocellular carcinoma and 12 breast cancer cell lines. Gene specific analysis of one bone marrow metastasis of RB, prechemotherapy and postchemotherapy, showed the typical genomic changes of RB pretreatment, which normalized after chemotherapy.


Assuntos
Dosagem de Genes , Genes do Retinoblastoma , Neoplasias da Retina/genética , Proteína do Retinoblastoma/genética , Retinoblastoma/genética , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Reação em Cadeia da Polimerase , Deleção de Sequência
7.
Mol Cancer Res ; 2(9): 495-503, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15383628

RESUMO

Retinoblastoma is initiated by loss of both RB1 alleles. Previous studies have shown that retinoblastoma tumors also show further genomic gains and losses. We now define a 2.62 Mbp minimal region of genomic loss of chromosome 16q22, which is likely to contain tumor suppressor gene(s), in 76 retinoblastoma tumors, using loss of heterozygosity (30 of 76 tumors) and quantitative multiplex PCR (71 of 76 tumors). The sequence-tagged site WI-5835 within intron 2 of the cadherin-11 (CDH11) gene showed the highest frequency of loss (54%, 22 of 41 samples tested). A second hotspot for loss (39%, 9 of 23 samples tested) was detected within intron 2 of the cadherin-13 (CDH13) gene. Furthermore, deletion of the exons of CDH11 and/or WI-5835 was shown by quantitative multiplex PCR in 17 of 30 (57%) of previously untested tumors. Immunoblot analyses revealed that 91% (20 of 22) retinoblastoma exhibited either a complete loss or a decrease of the intact form of CDH11 and 8 of 13 showed a prevalent band suggestive of the variant form. Copy number of WI-5835 for these samples correlated with CDH11 protein expression. CDH11 staining was evident in the inner nuclear layer in early mouse retinal development and in small transgenic murine SV40 large T antigen-induced retinoblastoma tumors, but advanced tumors frequently showed loss of CDH11 expression by reverse transcription-PCR, suggestive of a role for CDH11 in tumor progression or metastasis. CDH13 protein and mRNA were consistently expressed in all human and murine retinoblastoma compared with normal adult human retina. Our analyses implicate CDH11, but not CDH13, as a potential tumor suppressor gene in retinoblastoma.


Assuntos
Caderinas/genética , Deleção Cromossômica , Cromossomos Humanos Par 16/genética , Retinoblastoma/genética , Animais , Caderinas/metabolismo , Éxons/genética , Regulação da Expressão Gênica , Genes Supressores de Tumor , Genômica , Humanos , Imuno-Histoquímica , Íntrons/genética , Perda de Heterozigosidade , Camundongos , Retina/embriologia , Retina/crescimento & desenvolvimento , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...