Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202408592, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007541

RESUMO

We describe a methodology of post-polymerization functionalization to enable subsequent bulk depolymerization to monomer by utilizing mechanochemical macro-radical generation. By harnessing ultrasonic chain-scission in the presence of N-hydroxyphthalimide methacrylate (PhthMA), we successfully chain-end functionalize polymers to promote subsequent depolymerization in bulk, achieving up to 81% depolymerization of poly(methyl methacrylate) (PMMA) and poly(α-methylstyrene) (PAMS) within 30 min. This method of depolymerization yields a high-purity monomer that can be repolymerized. Moreover, as compared to the most common methods of depolymerization, this work is most efficient with ultra-high molecular weight (UHMW) polymers, establishing a method with the potential to address highly persistent, non-degradable all-carbon backbone plastic materials. Lastly, we demonstrate the expansion of this depolymerization method to commercial cell cast PMMA, achieving high degrees of depolymerization from post-consumer waste. This work is the first demonstration of applying PhthMA-promoted depolymerization strategies in homopolymer PMMA and PAMS prepared by conventional polymerization methods.

2.
ACS Polym Au ; 4(3): 235-246, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38882033

RESUMO

Bottlebrush (BB) polymers were synthesized via grafting-from-atom transfer radical polymerization (ATRP) of styrene on polypentenamer and polynorbornene macroinitiators with matched grafting density (n g = 4) and backbone degrees of polymerization (122 ≥ N bb ≥ 61) to produce a comparative study on their respective dilute solution properties as a function of increasing side chain degree of polymerization (116 ≥ N sc ≥ 5). The grafting-from technique produced near quantitative grafting efficiency and narrow dispersity N sc as evidenced by spectroscopic analysis and ring closing metathesis depolymerization of the polypentenamer BBs. The versatility of this synthetic approach permitted a comprehensive survey of power law expressions that arise from monitoring intrinsic viscosity, hydrodynamic radius, and radius of gyration as a function of increasing the molar mass of the BBs by increasing N sc. These values were compared to a series of linear (nongrafted, N sc = 0) macroinitiators in addition to linear grafts. This unique study allowed elucidation of the onset of bottlebrush behavior for two different types of bottlebrush backbones with identical grafting density but inherently different flexibility. In addition, grafting-from ATRP of methyl acrylate on a polypentenamer macroinitiator allowed the observation of the effects of graft chemistry in comparison to polystyrene. Differences in the observed scaling relationships in dilute solution as a function of each of these synthetic variants are discussed.

3.
Angew Chem Int Ed Engl ; 62(48): e202309951, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37793989

RESUMO

Polymerization-induced self-assembly (PISA) is a powerful technique for preparing block copolymer nanostructures. Recently, efforts have been focused on applying photochemistry to promote PISA due to the mild reaction conditions, low cost, and spatiotemporal control that light confers. Despite these advantages, chain-end degradation and long reaction times can mar the efficacy of this process. Herein, we demonstrate the use of ultrafast photoiniferter PISA to produce polymeric nanostructures. By exploiting the rapid photolysis of xanthates, near-quantitative monomer conversion can be achieved within five minutes to prepare micelles, worms, and vesicles at various core-chain lengths, concentrations, or molar compositions.

4.
ACS Macro Lett ; 12(4): 454-461, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36952321

RESUMO

Polymerization-induced self-assembly (PISA) is typically performed to produce polymer nanoparticles featuring specific assembly morphologies. Herein, we demonstrate the use of PISA as a synthetic tool to direct gradient copolymer synthesis. Specifically, we leverage hydrophobicity-induced reaction selectivity and the rate acceleration typically associated with polymer compartmentalization upon assembly during PISA to bias reaction selectivity. In the chain extension of a poly(ethylene glycol) macrochain transfer agent, the selectivity of diacetone acrylamide (DAAm) and N,N-dimethylacrylamide (DMA), two monomers with near-identical reactivity in water, can be modulated in situ such that DAAm is preferentially incorporated over DMA upon self-assembly. By increasing the feed ratio of DAAm, monomer differentiation can be further biased toward DAAm due to the locus of polymerization becoming increasingly hydrophobic. This change in selectivity affords the autonomous generation of DAAm-DMA gradient sequences, otherwise inaccessible without outside intervention. Finally, a mild hydrolysis protocol can then be employed to harvest DAAm-DMA sequences, yielding compositionally unique gradient copolymers.

5.
ACS Macro Lett ; 12(1): 14-19, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36533885

RESUMO

We report on a fundamental feature of photoiniferter polymerizations mediated with trithiocarbonates and xanthates. The polymerizations were found to be highly dependent on the activated electronic excitation of the iniferter. Enhanced rates of polymerization and greater control over molecular weights were observed for trithiocarbonate- and xanthate-mediated photoiniferter polymerizations when the n → π* transition of the iniferter was targeted compared to the polymerizations activating the π → π* transition. The disparities in rates of polymerization were attributed to the increased rate of C-S photolysis which was confirmed using model trapping studies. This study provides valuable insight into the role of electronic excitations in photoiniferter polymerization and provides guidance when selecting irradiation conditions for applications where light sensitivity is important.


Assuntos
Compostos de Enxofre , Tionas , Polimerização , Fotólise
6.
ACS Macro Lett ; 11(12): 1390-1395, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36469937

RESUMO

Controlled radical polymerization techniques enable the synthesis of polymers with predetermined molecular weights, narrow molecular weight distributions, and controlled architectures. Moreover, these polymerization approaches have been routinely shown to result in retained end-group functionality that can be reactivated to continue polymerization. However, reactivation of these end groups under conditions that instead promote depropagation is a viable route to initiate depolymerization and potentially enable closed-loop recycling from polymer to monomer. In this report, we investigate light as a trigger for thermal depolymerization of polymers prepared by reversible-addition-fragmentation chain-transfer (RAFT) polymerization. We study the role of irradiation wavelength by targeting the n → π* and π → π* electronic transitions of the thiocarbonylthio end-groups of RAFT-generated polymers to enhance depolymerization via terminal bond homolysis. Specifically, we explore depolymerization of polymers with trithiocarbonate, dithiocarbamate, and p-substituted dithiobenzoate end groups with the purpose of increasing depolymerization efficiency with light. As the wavelength decreases from the visible range to the UV range, the rate of depolymerization is dramatically increased. This method of photoassisted depolymerization allows up to 87% depolymerization efficiency within 1 h, results that may further the advancement of recyclable materials and life-cycle circularity.


Assuntos
Polímeros , Polimerização , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...