Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 277(51): 49531-7, 2002 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-12388538

RESUMO

Stress stimuli can mediate apoptosis by generation of the lipid second messenger, ceramide. Herein we investigate the molecular mechanism of ceramide signaling in endothelial apoptosis induced by fenretinide (N-(4-hydroxyphenyl)retinamide (4-HPR)). 4-HPR, a synthetic derivative of retinoic acid that induces ceramide in tumor cell lines, has been shown to have antiangiogenic effects, but the molecular mechanism of these is largely unknown. We report that 4-HPR was cytotoxic to endothelial cells (50% cytotoxicity at 2.4 microm, 90% at 5.36 microm) and induced a caspase-dependent endothelial apoptosis. 4-HPR (5 microm) increased ceramide levels in endothelial cells 5.3-fold, and the increase in ceramide was required to achieve the apoptotic effect of 4-HPR. The 4-HPR-induced increase in ceramide was suppressed by inhibitors of ceramide synthesis, fumonisin B(1), myriocin, and l-cycloserine, and 4-HPR transiently activated serine palmitoyltransferase, demonstrating that 4-HPR induced de novo ceramide synthesis. Sphingomyelin levels were not altered by 4-HPR, and desipramine had no effect on ceramide level, suggesting that sphingomyelinase did not contribute to the 4-HPR-induced ceramide increase. Finally, the pancaspase inhibitor, t-butyloxycarbonyl-aspartyl[O-methyl]-fluoromethyl ketone, suppressed 4-HPR-mediated apoptosis but not ceramide accumulation, suggesting that ceramide is upstream of caspases. Our results provide the first evidence that increased ceramide biosynthesis is required for 4-HPR-induced endothelial apoptosis and present a molecular mechanism for its antiangiogenic effects.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Ceramidas/farmacologia , Endotélio Vascular/patologia , Fenretinida/farmacologia , Transdução de Sinais , Aciltransferases/metabolismo , Inibidores da Angiogênese/farmacologia , Caspases/metabolismo , Células Cultivadas , Ceramidas/metabolismo , Cromatografia Líquida de Alta Pressão , Ciclosserina/metabolismo , Relação Dose-Resposta a Droga , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Ativação Enzimática , Ácidos Graxos Monoinsaturados/farmacologia , Citometria de Fluxo , Fase G1 , Glucosilceramidas/metabolismo , Humanos , Microssomos , Espécies Reativas de Oxigênio , Fase de Repouso do Ciclo Celular , Serina C-Palmitoiltransferase , Esfingomielinas/metabolismo , Fatores de Tempo , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...