Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Int J Antimicrob Agents ; 63(6): 107161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561094

RESUMO

OBJECTIVE: Hypermutable Pseudomonas aeruginosa strains are highly prevalent in chronic lung infections of patients with cystic fibrosis (CF). Acute exacerbations of these infections have limited treatment options. This study aimed to investigate inhaled aztreonam and tobramycin against clinical hypermutable P. aeruginosa strains using the CDC dynamic in vitro biofilm reactor (CBR), mechanism-based mathematical modelling (MBM) and genomic studies. METHODS: Two CF multidrug-resistant strains were investigated in a 168 h CBR (n = 2 biological replicates). Regimens were inhaled aztreonam (75 mg 8-hourly) and tobramycin (300 mg 12-hourly) in monotherapies and combination. The simulated pharmacokinetic profiles of aztreonam and tobramycin (t1/2 = 3 h) were based on published lung fluid concentrations in patients with CF. Total viable and resistant counts were determined for planktonic and biofilm bacteria. MBM of total and resistant bacterial counts and whole genome sequencing were completed. RESULTS: Both isolates showed reproducible bacterial regrowth and resistance amplification for the monotherapies by 168 h. The combination performed synergistically, with minimal resistant subpopulations compared to the respective monotherapies at 168 h. Mechanistic synergy appropriately described the antibacterial effects of the combination regimen in the MBM. Genomic analysis of colonies recovered from monotherapy regimens indicated noncanonical resistance mechanisms were likely responsible for treatment failure. CONCLUSION: The combination of aztreonam and tobramycin was required to suppress the regrowth and resistance of planktonic and biofilm bacteria in all biological replicates of both hypermutable multidrug-resistant P. aeruginosa CF isolates. The developed MBM could be utilised for future investigations of this promising inhaled combination.


Assuntos
Antibacterianos , Aztreonam , Biofilmes , Fibrose Cística , Sinergismo Farmacológico , Infecções por Pseudomonas , Pseudomonas aeruginosa , Tobramicina , Sequenciamento Completo do Genoma , Tobramicina/administração & dosagem , Tobramicina/farmacologia , Aztreonam/farmacologia , Aztreonam/administração & dosagem , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Biofilmes/efeitos dos fármacos , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Humanos , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Administração por Inalação , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética , Modelos Teóricos , Quimioterapia Combinada
2.
Microbiol Spectr ; 12(4): e0380523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38426766

RESUMO

Pasteurella multocida is an upper respiratory tract commensal in several mammal and bird species but can also cause severe disease in humans and in production animals such as poultry, cattle, and pigs. In this study, we performed whole-genome sequencing of P. multocida isolates recovered from a range of human infections, from the mouths of cats, and from wounds on dogs. Together with publicly available P. multocida genome sequences, we performed phylogenetic and comparative genomic analyses. While isolates from cats and dogs were spread across the phylogenetic tree, human infections were caused almost exclusively by subsp. septica strains. Most of the human isolates were capsule type A and LPS type L1 and L3; however, some strains lacked a capsule biosynthesis locus, and some strains contained a novel LPS outer-core locus, distinct from the eight LPS loci that can currently be identified using an LPS multiplex PCR. In addition, the P. multocida strains isolated from human infections contained novel mobile genetic elements. We compiled a curated database of known P. multocida virulence factor and antibiotic resistance genes (PastyVRDB) allowing for detailed characterization of isolates. The majority of human P. multocida isolates encoded a reduced range of iron receptors and contained only one filamentous hemagglutinin gene. Finally, gene-trait analysis identified a putative L-fucose uptake and utilization pathway that was over-represented in subsp. septica strains and may represent a novel host predilection mechanism in this subspecies. Together, these analyses have identified pathogenic mechanisms likely important for P. multocida zoonotic infections.IMPORTANCEPasteurella multocida can cause serious infections in humans, including skin and wound infections, pneumonia, peritonitis, meningitis, and bacteraemia. Cats and dogs are known vectors of human pasteurellosis, transmitting P. multocida via bite wounds or contact with animal saliva. The mechanisms that underpin P. multocida human predilection and pathogenesis are poorly understood. With increasing identification of antibiotic-resistant P. multocida strains, understanding these mechanisms is vital for developing novel treatments and control strategies to combat P. multocida human infection. Here, we show that a narrow range of P. multocida strains cause disease in humans, while cats and dogs, common vectors for zoonotic infections, can harbor a wide range of P. multocida strains. We also present a curated P. multocida-specific database, allowing quick and detailed characterization of newly sequenced P. multocida isolates.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Humanos , Gatos , Bovinos , Animais , Suínos , Cães , Pasteurella multocida/genética , Filogenia , Lipopolissacarídeos/metabolismo , Infecções por Pasteurella/veterinária , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Zoonoses , Mamíferos
3.
Antimicrob Agents Chemother ; 67(8): e0041423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428034

RESUMO

Pseudomonas aeruginosa remains a challenge in chronic respiratory infections in cystic fibrosis (CF). Ceftolozane-tazobactam has not yet been evaluated against multidrug-resistant hypermutable P. aeruginosa isolates in the hollow-fiber infection model (HFIM). Isolates CW41, CW35, and CW44 (ceftolozane-tazobactam MICs of 4, 4, and 2 mg/L, respectively) from adults with CF were exposed to simulated representative epithelial lining fluid pharmacokinetics of ceftolozane-tazobactam in the HFIM. Regimens were continuous infusion (CI; 4.5 g/day to 9 g/day, all isolates) and 1-h infusions (1.5 g every 8 hours and 3 g every 8 hours, CW41). Whole-genome sequencing and mechanism-based modeling were performed for CW41. CW41 (in four of five biological replicates) and CW44 harbored preexisting resistant subpopulations; CW35 did not. For replicates 1 to 4 of CW41 and CW44, 9 g/day CI decreased bacterial counts to <3 log10 CFU/mL for 24 to 48 h, followed by regrowth and resistance amplification. Replicate 5 of CW41 had no preexisting subpopulations and was suppressed below ~3 log10 CFU/mL for 120 h by 9 g/day CI, followed by resistant regrowth. Both CI regimens reduced CW35 bacterial counts to <1 log10 CFU/mL by 120 h without regrowth. These results corresponded with the presence or absence of preexisting resistant subpopulations and resistance-associated mutations at baseline. Mutations in ampC, algO, and mexY were identified following CW41 exposure to ceftolozane-tazobactam at 167 to 215 h. Mechanism-based modeling well described total and resistant bacterial counts. The findings highlight the impact of heteroresistance and baseline mutations on the effect of ceftolozane-tazobactam and limitations of MIC to predict bacterial outcomes. The resistance amplification in two of three isolates supports current guidelines that ceftolozane-tazobactam should be utilized together with another antibiotic against P. aeruginosa in CF.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Adulto , Humanos , Pseudomonas aeruginosa , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Cefalosporinas/farmacocinética , Tazobactam/farmacologia , Antibacterianos/farmacocinética , Mitomicina/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética
4.
Int J Antimicrob Agents ; 62(3): 106887, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315906

RESUMO

OBJECTIVE: Acute exacerbations of biofilm-associated Pseudomonas aeruginosa infections in cystic fibrosis (CF) have limited treatment options. Ceftolozane/tazobactam (alone and with a second antibiotic) has not yet been investigated against hypermutable clinical P. aeruginosa isolates in biofilm growth. This study aimed to evaluate, using an in vitro dynamic biofilm model, ceftolozane/tazobactam alone and in combination with tobramycin at simulated representative lung fluid pharmacokinetics against free-floating (planktonic) and biofilm states of two hypermutable P. aeruginosa epidemic strains (LES-1 and CC274) from adolescents with CF. METHODS: Regimens were intravenous ceftolozane/tazobactam 4.5 g/day continuous infusion, inhaled tobramycin 300 mg 12-hourly, intravenous tobramycin 10 mg/kg 24-hourly, and both ceftolozane/tazobactam-tobramycin combinations. The isolates were susceptible to both antibiotics. Total and less-susceptible free-floating and biofilm bacteria were quantified over 120-168 h. Ceftolozane/tazobactam resistance mechanisms were investigated by whole-genome sequencing. Mechanism-based modelling of bacterial viable counts was performed. RESULTS: Monotherapies of ceftolozane/tazobactam and tobramycin did not sufficiently suppress emergence of less-susceptible subpopulations, although inhaled tobramycin was more effective than intravenous tobramycin. Ceftolozane/tazobactam resistance development was associated with classical (AmpC overexpression plus structural modification) and novel (CpxR mutations) mechanisms depending on the strain. Against both isolates, combination regimens demonstrated synergy and completely suppressed the emergence of ceftolozane/tazobactam and tobramycin less-susceptible free-floating and biofilm bacterial subpopulations. CONCLUSION: Mechanism-based modelling incorporating subpopulation and mechanistic synergy well described the antibacterial effects of all regimens against free-floating and biofilm bacterial states. These findings support further investigation of ceftolozane/tazobactam in combination with tobramycin against biofilm-associated P. aeruginosa infections in adolescents with CF.


Assuntos
Infecções por Pseudomonas , Tobramicina , Humanos , Adolescente , Tobramicina/farmacologia , Tobramicina/uso terapêutico , Pseudomonas aeruginosa , Cefalosporinas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tazobactam/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Biofilmes , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
5.
Microbiol Spectr ; 10(2): e0019522, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35404102

RESUMO

Pasteurella multocida is a Gram-negative capsulated bacterium responsible for a range of diseases that cause severe morbidity and mortality in livestock animals. The hyaluronic acid (HA) capsule produced by P. multocida serogroup A strains is a critical virulence factor. In this study, we utilized transposon-directed insertion site sequencing (TraDIS) to identify genes essential for in vitro growth of P. multocida and combined TraDIS with discontinuous density gradients (TraDISort) to identify genes required for HA capsule production and regulation in this pathogen. Analysis of mutants with a high cell density phenotype, indicative of the loss of extracellular capsule, led to the identification of 69 genes important for capsule production. These genes included all previously characterized genes in the capsule biosynthesis locus and fis and hfq, which encode known positive regulators of P. multocida capsule. Many of the other capsule-associated genes identified in this study were involved in regulation or activation of the stringent response, including spoT and relA, which encode proteins that regulate the concentration of guanosine alarmones. Disruption of the autoregulatory domains in the C-terminal half of SpoT using insertional mutagenesis resulted in reduced expression of capsule biosynthesis genes and an acapsular phenotype. Overall, these findings have greatly increased the understanding of hyaluronic acid capsule production and regulation in P. multocida. IMPORTANCE The bacterial pathogen P. multocida can cause serious disease in production animals, including fowl cholera in poultry, hemorrhagic septicemia in cattle and buffalo, atrophic rhinitis in pigs, and respiratory diseases in a range of livestock. P. multocida produces a capsule that is essential for systemic disease, but the complete mechanisms underlying synthesis and regulation of capsule production are not fully elucidated. A whole-genome analysis using TraDIS was undertaken to identify genes essential for growth in rich media and to obtain a comprehensive characterization of capsule production. Many of the capsule-associated genes identified in this study were involved in the stringent response to stress, a novel finding for this important animal pathogen.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Bovinos , Ácido Hialurônico/metabolismo , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária , Pasteurella multocida/genética , Sorogrupo , Suínos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
J Bacteriol ; 204(4): e0059221, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35323048

RESUMO

The Gram-negative pathogen Pasteurella multocida is the causative agent of many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. One mechanism by which bacteria regulate transcript abundance and protein production is riboregulation, which involves the interaction of a small RNA (sRNA) with a target mRNA to alter transcript stability and/or translational efficiency. This interaction often requires stabilization by an RNA-binding protein such as ProQ or Hfq. In Escherichia coli and a small number of other species, ProQ has been shown to play a critical role in stabilizing sRNA-mRNA interactions and preferentially binds to the 3' stem-loop regions of the mRNA transcripts, characteristic of intrinsic transcriptional terminators. The aim of this study was to determine the role of ProQ in regulating P. multocida transcript abundance and identify the RNA targets to which it binds. We assessed differentially expressed transcripts in a proQ mutant and identified sites of direct ProQ-RNA interaction using in vivo UV-cross-linking and analysis of cDNA (CRAC). These analyses demonstrated that ProQ binds to, and stabilizes, ProQ-dependent sRNAs and transfer RNAs in P. multocida via adenosine-enriched, highly structured sequences. The binding of ProQ to two RNA molecules was characterized, and these analyses showed that ProQ bound within the coding sequence of the transcript PmVP161_1121, encoding an uncharacterized protein, and within the 3' region of the putative sRNA Prrc13. IMPORTANCE Regulation in P. multocida involving the RNA-binding protein Hfq is required for hyaluronic acid capsule production and virulence. This study further expands our understanding of riboregulation by examining the role of a second RNA-binding protein, ProQ, in transcript regulation and abundance in P. multocida.


Assuntos
Proteínas de Escherichia coli , Pasteurella multocida , Pequeno RNA não Traduzido , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo
7.
Front Microbiol ; 12: 738780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659171

RESUMO

Acinetobacter baumannii is a problematic nosocomial pathogen owing to its increasing resistance to antibiotics and its great ability to survive in the hospital environment, which is linked to its capacity to form biofilms. Structural and functional investigations of post-translational modifications, such as phosphorylations, may lead to identification of candidates for therapeutic targets against this pathogen. Here, we present the first S/T/Y phosphosecretome of two A. baumannii strains, the reference strain ATCC 17978 and the virulent multi-drug resistant strain AB0057, cultured in two modes of growth (planktonic and biofilm) using TiO2 chromatography followed by high resolution mass spectrometry. In ATCC 17978, we detected a total of 137 (97 phosphoproteins) and 52 (33 phosphoproteins) phosphosites in biofilm and planktonic modes of growth, respectively. Similarly, in AB0057, 155 (119 phosphoproteins) and 102 (74 phosphoproteins) phosphosites in biofilm and planktonic modes of growth were identified, respectively. Both strains in the biofilm mode of growth showed a higher number of phosphosites and phosphoproteins compared to planktonic growth. Several phosphorylated sites are localized in key regions of proteins involved in either drug resistance (ß-lactamases), adhesion to host tissues (pilins), or protein secretion (Hcp). Site-directed mutagenesis of the Hcp protein, essential for type VI secretion system-mediated interbacterial competition, showed that four of the modified residues are essential for type VI secretion system activity.

8.
J Glob Antimicrob Resist ; 26: 55-63, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34023531

RESUMO

OBJECTIVES: Hypermutable Pseudomonas aeruginosa strains are a major challenge in cystic fibrosis. We investigated bacterial killing and resistance emergence for approved ceftazidime and tobramycin regimens, alone and in combination. METHODS: Pseudomonas aeruginosa PAOΔmutS and six hypermutable clinical isolates were examined using 48-h static concentration time-kill (SCTK) studies (inoculum ~107.5 CFU/mL); four strains were also studied in a dynamic in vitro model (IVM) (inoculum ~108 CFU/mL). The IVM simulated concentration-time profiles in epithelial lining fluid following intravenous administration of ceftazidime (3 g/day and 9 g/day continuous infusion), tobramycin (5 mg/kg and 10 mg/kg via 30-min infusion 24-hourly; half-life 3.5 h), and their combinations. Time courses of total and less-susceptible populations were determined. RESULTS: Ceftazidime plus tobramycin demonstrated synergistic killing in SCTK studies for all strains, although to a lesser extent for ceftazidime-resistant strains. In the IVM, ceftazidime and tobramycin monotherapies provided ≤5.4 and ≤3.4 log10 initial killing, respectively; however, re-growth with resistance occurred by 72 h. Against strains susceptible to one or both antibiotics, high-dose combination regimens provided >6 log10 initial killing, which was generally synergistic from 8-24 h, and marked suppression of re-growth and resistance at 72 h. The time course of bacterial density in the IVM was well described by mechanism-based models, enabling Monte Carlo simulations (MCSs) to predict likely effectiveness of the combination in patients. CONCLUSION: Results of the IVM and MCS suggested antibacterial effect depends both on the strain's susceptibility and hypermutability. Further investigation of the combination against hypermutable P. aeruginosa strains is warranted.


Assuntos
Pseudomonas aeruginosa , Tobramicina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftazidima/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Tobramicina/farmacologia
9.
ACS Infect Dis ; 7(6): 1584-1595, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33834753

RESUMO

Carbapenem-resistant Klebsiella pneumoniae has been classified as an Urgent Threat by the Centers for Disease Control and Prevention (CDC). The combination of two "old" antibiotics, polymyxin and chloramphenicol, displays synergistic killing against New Delhi metallo-ß-lactamase (NDM)-producing K. pneumoniae. However, the mechanism(s) underpinning their synergistic killing are not well studied. We employed an in vitro pharmacokinetic/pharmacodynamic model to mimic the pharmacokinetics of the antibiotics in patients and examined bacterial killing against NDM-producing K. pneumoniae using a metabolomic approach. Metabolomic analysis was integrated with an isolate-specific genome-scale metabolic network (GSMN). Our results show that metabolic responses to polymyxin B and/or chloramphenicol against NDM-producing K. pneumoniae involved the inhibition of cell envelope biogenesis, metabolism of arginine and nucleotides, glycolysis, and pentose phosphate pathways. Our metabolomic and GSMN modeling results highlight the novel mechanisms of a synergistic antibiotic combination at the network level and may have a significant potential in developing precision antimicrobial chemotherapy in patients.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Cloranfenicol/farmacologia , Farmacorresistência Bacteriana Múltipla , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Polimixinas , Estados Unidos , beta-Lactamases
10.
Clin Pharmacol Ther ; 109(4): 1000-1020, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33576025

RESUMO

Multidrug-resistant bacteria are causing a serious global health crisis. A dramatic decline in antibiotic discovery and development investment by pharmaceutical industry over the last decades has slowed the adoption of new technologies. It is imperative that we create new mechanistic insights based on latest technologies, and use translational strategies to optimize patient therapy. Although drug development has relied on minimal inhibitory concentration testing and established in vitro and mouse infection models, the limited understanding of outer membrane permeability in Gram-negative bacteria presents major challenges. Our team has developed a platform using the latest technologies to characterize target site penetration and receptor binding in intact bacteria that inform translational modeling and guide new discovery. Enhanced assays can quantify the outer membrane permeability of ß-lactam antibiotics and ß-lactamase inhibitors using multiplex liquid chromatography tandem mass spectrometry. While ß-lactam antibiotics are known to bind to multiple different penicillin-binding proteins (PBPs), their binding profiles are almost always studied in lysed bacteria. Novel assays for PBP binding in the periplasm of intact bacteria were developed and proteins identified via proteomics. To characterize bacterial morphology changes in response to PBP binding, high-throughput flow cytometry and time-lapse confocal microscopy with fluorescent probes provide unprecedented mechanistic insights. Moreover, novel assays to quantify cytosolic receptor binding and intracellular drug concentrations inform target site occupancy. These mechanistic data are integrated by quantitative and systems pharmacology modeling to maximize bacterial killing and minimize resistance in in vitro and mouse infection models. This translational approach holds promise to identify antibiotic combination dosing strategies for patients with serious infections.


Assuntos
Técnicas Bacteriológicas/métodos , Descoberta de Drogas/métodos , Farmacorresistência Bacteriana Múltipla/fisiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Animais , Membrana Celular/fisiologia , Modelos Animais de Doenças , Humanos , Modelos Teóricos , Proteínas de Ligação às Penicilinas/fisiologia , beta-Lactamas/farmacologia
11.
Glycobiology ; 31(3): 307-314, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32839812

RESUMO

We describe the structural characterization of the capsular polysaccharides (CPSs) of Pasteurella multocida serotypes B and E. CPS was isolated following organic solvent precipitation of the supernatant from flask grown cells. Structural analysis utilizing nuclear magnetic resonance spectroscopy enabled the determination of the CPS structures and revealed significant structural similarities between the two serotypes, but also provided an explanation for the serological distinction. This observation was extended by the development of polyclonal sera to the glycoconjugate of serotype B CPS that corroborated the structural likenesses and differences. Finally, identification of these structures enabled a more comprehensive interrogation of the genetic loci and prediction of roles for some of the encoded proteins in repeat unit biosynthesis.


Assuntos
Pasteurella multocida/química , Polissacarídeos , Configuração de Carboidratos , Pasteurella multocida/imunologia , Polissacarídeos/química , Polissacarídeos/genética , Polissacarídeos/imunologia , Sorotipagem
12.
Adv Sci (Weinh) ; 7(15): 2000704, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32775156

RESUMO

Multidrug-resistant Acinetobacter baumannii is a top-priority pathogen globally and polymyxins are a last-line therapy. Polymyxin dependence in A. baumannii (i.e., nonculturable on agar without polymyxins) is a unique and highly-resistant phenotype with a significant potential to cause treatment failure in patients. The present study discovers that a polymyxin-dependent A. baumannii strain possesses mutations in both lpxC (lipopolysaccharide biosynthesis) and katG (reactive oxygen species scavenging) genes. Correlative multiomics analyses show a significantly remodeled cell envelope and remarkably abundant phosphatidylglycerol in the outer membrane (OM). Molecular dynamics simulations and quantitative membrane lipidomics reveal that polymyxin-dependent growth emerges only when the lipopolysaccharide-deficient OM distinctively remodels with ≥ 35% phosphatidylglycerol, and with "patch" binding on the OM by the rigid polymyxin molecules containing strong intramolecular hydrogen bonding. Rather than damaging the OM, polymyxins bind to the phosphatidylglycerol-rich OM and strengthen the membrane integrity, thereby protecting bacteria from external reactive oxygen species. Dependent growth is observed exclusively with polymyxin analogues, indicating a critical role of the specific amino acid sequence of polymyxins in forming unique structures for patch-binding to bacterial OM. Polymyxin dependence is a novel antibiotic resistance mechanism and the current findings highlight the risk of 'invisible' polymyxin-dependent isolates in the evolution of resistance.

13.
Int J Antimicrob Agents ; 56(2): 106061, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32574791

RESUMO

The combination of polymyxins and chloramphenicol possesses synergistic killing activity against New Delhi metallo-ß-lactamase (NDM)-producing Klebsiella pneumoniae. This systems study examined the transcriptomic responses to the polymyxin/chloramphenicol combination in clinical NDM-producing K. pneumoniae isolate S01. Klebsiella pneumoniae S01 (initial inoculum ~108 CFU/mL) was treated with polymyxin B (1 mg/L, continuous infusion) or chloramphenicol [maximum concentration (Cmax) = 8 mg/L, half-life (t1/2) = 4 h], alone or in combination, using an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model to mimic their pharmacokinetics in patients. Transcriptomic profiles of bacterial samples collected at 0, 0.25, 1, 4 and 24 h were examined using RNA sequencing (RNA-Seq). Chloramphenicol monotherapy significantly increased the expression of genes involved in ribosomal synthesis across the entire 24-h treatment, reflective of chloramphenicol-mediated inhibition of protein synthesis. The effect of polymyxin B was rapid and no major pathways were perturbed at later time points (4 h and 24 h). Combination treatment yielded the highest number of differentially expressed genes, including a large number observed following chloramphenicol monotherapy, in particular carbohydrate, nucleotide, amino acid and cell wall metabolism. Notably, chloramphenicol alone and in combination with polymyxin B significantly inhibited the expression of the arn operon that is responsible for lipid A modification and polymyxin resistance. These results indicate that the polymyxin/chloramphenicol combination displayed persistent transcriptomic responses over 24 h mainly on cell envelope synthesis and metabolism of carbohydrates, nucleotides and amino acids.


Assuntos
Cloranfenicol/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Polimixina B/farmacologia , Transcriptoma , Antibacterianos/farmacologia , Proteínas de Bactérias , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Regulação Bacteriana da Expressão Gênica , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Redes e Vias Metabólicas , Testes de Sensibilidade Microbiana , RNA Bacteriano , Análise de Sequência de RNA , beta-Lactamases/genética
14.
Mol Omics ; 16(4): 327-338, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32469363

RESUMO

Multidrug-resistant Acinetobacter baumannii is a top-priority Gram-negative pathogen and polymyxins are a last-line therapeutic option. Previous systems pharmacological studies examining polymyxin killing and resistance usually focused on individual strains, and the derived knowledge could be limited by strain-specific genomic context. In this study, we examined the gene expression of five A. baumannii strains (34654, 1207552, 1428368, 1457504 and ATCC 19606) to determine the common differentially expressed genes in response to polymyxin treatments. A pan-genome containing 6061 genes was identified for 89 A. baumannii genomes from RefSeq database which included the five strains examined in this study; 2822 of the 6061 genes constituted the core genome. After 2 mg L-1 or 0.75 × MIC polymyxin treatments for 15 min, 41 genes were commonly up-regulated, including those involved in membrane biogenesis and homeostasis, lipoprotein and phospholipid trafficking, efflux pump and poly-N-acetylglucosamine biosynthesis; six genes were commonly down-regulated, three of which were related to fatty acid biosynthesis. Additionally, comparison of the gene expression at 15 and 60 min in ATCC 19606 revealed that polymyxin treatment resulted in a rapid change in amino acid metabolism at 15 min and perturbations on envelope biogenesis at both time points. This is the first pan-transcriptomic study for polymyxin-treated A. baumannii and our results identified that the remodelled outer membrane, up-regulated efflux pumps and down-regulated fatty acid biosynthesis might be essential for early responses to polymyxins in A. baumannii. Our findings provide important mechanistic insights into bacterial responses to polymyxin killing and may facilitate the optimisation of polymyxin therapy against this problematic 'superbug'.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Polimixinas/farmacologia , Transcriptoma , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Antibacterianos/uso terapêutico , Biologia Computacional/métodos , Bases de Dados Genéticas , Regulação Enzimológica da Expressão Gênica , Genômica/métodos , Humanos , Filogenia , Polimixinas/uso terapêutico , Fatores de Tempo
15.
Vet Microbiol ; 242: 108603, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32122607

RESUMO

Two-component signal transduction systems (TCSTS) are abundant among prokaryotes and regulate important functions, including drug resistance and virulence. The Gram-negative bacterium Burkholderia pseudomallei, which causes the severe infectious disease melioidosis, encodes 136 putative TCSTS components. In silico analyses of these TCSTS indicated that the predicted BbeR-BbeS system (BPSL1036-BPSL1037) displayed significant amino acid sequence similarity to the Shigella flexneri virulence-associated OmpR-EnvZ osmoregulator. To assess the function of the B. pseudomallei BbeR-BbeS system, we constructed by allelic exchange a ΔbbeRS double mutant strain lacking both genes, and single ΔbbeR and ΔbbeS mutants. All three mutant strains caused disease in the BALB/c acute melioidosis model at the same rate as the wild-type strain, displayed unchanged swarming motility on semi-solid medium, and were unaffected for viability on high-osmolarity media. However, when cultured at 37 °C for at least 14 days, ΔbbeS and ΔbbeR colonies developed a distinct, hypermucoid morphology absent in similarly-cultured wild-type colonies. At both 30 °C and 37 °C, these hypermucoid strains produced wild-type levels of type I capsule but released increased quantities of extracellular DNA (eDNA). Upon static growth in liquid medium, all B. pseudomallei strains produced pellicle biofilms that contained DNA in close association with bacterial cells; however, the ΔbbeS and ΔbbeR strains produced increased biofilms with altered microscopic architecture compared to the wild-type. Unusually, while the ΔbbeS and ΔbbeR single-deletion mutants displayed clear phenotypes, the ΔbbeRS double-deletion mutant was indistinguishable from the wild-type strain. We propose that BbeR-BbeS indirectly affects eDNA secretion and biofilm formation through cross-talk with one or more other TCSTS.


Assuntos
Biofilmes/crescimento & desenvolvimento , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/fisiologia , DNA/metabolismo , Deleção de Genes , Transdução de Sinais/genética , Animais , Proteínas de Bactérias/genética , Melioidose/microbiologia , Camundongos Endogâmicos BALB C , Mutação , Fenótipo , Virulência
16.
mBio ; 11(1)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047131

RESUMO

Poor penetration through the outer membrane (OM) of Gram-negative bacteria is a major barrier of antibiotic development. While ß-lactam antibiotics are commonly used against Klebsiella pneumoniae and Enterobacter cloacae, there are limited data on OM permeability especially in K. pneumoniae Here, we developed a novel cassette assay, which can simultaneously quantify the OM permeability to five ß-lactams in carbapenem-resistant K. pneumoniae and E. cloacae Both clinical isolates harbored a blaKPC-2 and several other ß-lactamases. The OM permeability of each antibiotic was studied separately ("discrete assay") and simultaneously ("cassette assay") by determining the degradation of extracellular ß-lactam concentrations via multiplex liquid chromatography-tandem mass spectrometry analyses. Our K. pneumoniae isolate was polymyxin resistant, whereas the E. cloacae was polymyxin susceptible. Imipenem penetrated the OM at least 7-fold faster than meropenem for both isolates. Imipenem penetrated E. cloacae at least 258-fold faster and K. pneumoniae 150-fold faster compared to aztreonam, cefepime, and ceftazidime. For our ß-lactams, OM permeability was substantially higher in the E. cloacae compared to the K. pneumoniae isolate (except for aztreonam). This correlated with a higher OmpC porin production in E. cloacae, as determined by proteomics. The cassette and discrete assays showed comparable results, suggesting limited or no competition during influx through OM porins. This cassette assay allowed us, for the first time, to efficiently quantify the OM permeability of multiple ß-lactams in carbapenem-resistant K. pneumoniae and E. cloacae Characterizing the OM permeability presents a critical contribution to combating the antimicrobial resistance crisis and enables us to rationally optimize the use of ß-lactam antibiotics.IMPORTANCE Antimicrobial resistance is causing a global human health crisis and is affecting all antibiotic classes. While ß-lactams have been commonly used against susceptible isolates of Klebsiella pneumoniae and Enterobacter cloacae, carbapenem-resistant isolates are spreading worldwide and pose substantial clinical challenges. Rapid penetration of ß-lactams leads to high drug concentrations at their periplasmic target sites, allowing ß-lactams to more completely inactivate their target receptors. Despite this, there are limited tangible data on the permeability of ß-lactams through the outer membranes of many Gram-negative pathogens. This study presents a novel, cassette assay, which can simultaneously characterize the permeability of five ß-lactams in multidrug-resistant clinical isolates. We show that carbapenems, and especially imipenem, penetrate the outer membrane of K. pneumoniae and E. cloacae substantially faster than noncarbapenem ß-lactams. The ability to efficiently characterize the outer membrane permeability is critical to optimize the use of ß-lactams and combat carbapenem-resistant isolates.


Assuntos
Antibacterianos/farmacologia , Membrana Externa Bacteriana/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacter cloacae/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , beta-Lactamas/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Enterobacter cloacae/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana/métodos
17.
Front Microbiol ; 10: 2440, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736890

RESUMO

Many Gram-negative bacteria use a type VI secretion system (T6SS) for microbial warfare and/or host manipulation. Acinetobacter baumannii is an important nosocomial pathogen and many A. baumannii strains utilize a T6SS to deliver toxic effector proteins to surrounding bacterial cells. These toxic effectors are usually delivered together with VgrG proteins, which form part of the T6SS tip complex. All previously identified A. baumannii T6SS effectors are encoded within a three- or four-gene locus that also encodes a cognate VgrG and immunity protein, and sometimes a chaperone. In order to characterize the diversity and distribution of T6SS effectors and immunity proteins in this species, we first identified all vgrG genes in 97 A. baumannii strains via the presence of the highly conserved VgrG domain. Most strains encoded between two and four different VgrG proteins. We then analyzed the regions downstream of the identified vgrG genes and identified more than 240 putative effectors. The presence of conserved domains in these effectors suggested a range of functions, including peptidoglycan hydrolases, lipases, nucleases, and nucleic acid deaminases. However, 10 of the effector groups had no functionally characterized domains. Phylogenetic analysis of these putative effectors revealed that they clustered into 32 distinct groups that appear to have been acquired from a diverse set of ancestors. Corresponding immunity proteins were identified for all but two of the effector groups. Effectors from eight of the 32 groups contained N-terminal rearrangement hotspot (RHS) domains. The C-terminal regions of these RHS proteins, which are predicted to confer the toxic effector function, were very diverse, but the N-terminal RHS domains clustered into just two groups. While the majority of A. baumannii strains contained an RHS type effector, no strains encoded two RHS effectors with similar N-terminal sequences, suggesting that the presence of similar N-terminal RHS domains leads to competitive exclusion. Together, these analyses define the extreme diversity of T6SS effectors within A. baumannii and, as many have unknown functions, future detailed characterization of these effectors may lead to the identification of proteins with novel antibacterial properties.

19.
Adv Exp Med Biol ; 1145: 55-71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31364071

RESUMO

Polymyxin antibiotics are increasingly being used as last-line therapeutic options against a number of multidrug resistant bacteria. These antibiotics show strong bactericidal activity against a range of Gram-negative bacteria, but with the increased use of these antibiotics resistant strains are emerging at an alarming rate. Furthermore, some Gram-negative species, such as Neisseria meningitidis, Proteus mirabilis and Burkholderia spp., are intrinsically resistant to the action of polymyxins. Most identified polymyxin resistance mechanisms in Gram-negative bacteria involve changes to the lipopolysaccharide (LPS) structure, as polymyxins initially interact with the negatively charged lipid A component of LPS. The controlled addition of positively charged residues such as 4-amino-L-arabinose, phosphoethanolamine and/or galactosamine to LPS results in a reduced negative charge on the bacterial surface and therefore reduced interaction between the polymyxin and the LPS. Polymyxin resistant species produce LPS that intrinsically contains one or more of these additions. While the genes necessary for most of these additions are chromosomally encoded, plasmid-borne phosphoethanolamine transferases (mcr-1 to mcr-8) have recently been identified and these plasmids threaten to increase the rate of dissemination of clinically relevant colistin resistance. Uniquely, Acinetobacter baumannii can also become highly resistant to polymyxins via spontaneous mutations in the lipid A biosynthesis genes lpxA, lpxC or lpxD such that they produce no LPS or lipid A. A range of other non-LPS-dependent polymyxin resistance mechanisms has also been identified in bacteria, but these generally result in only low levels of resistance. These include increased anionic capsular polysaccharide production in Klebsiella pneumoniae, expression of efflux systems such as MtrCDE in N. meningitidis, and altered expression of outer membrane proteins in a small number of species.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Polimixinas/farmacologia , Acinetobacter baumannii , Colistina , Genes Bacterianos , Lipopolissacarídeos/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-30988147

RESUMO

There is a great need for efficacious therapies against Gram-negative bacteria. Double ß-lactam combination(s) (DBL) are relatively safe, and preclinical data are promising; however, their clinical role has not been well defined. We conducted a metaanalysis of the clinical and microbiological efficacy of DBL compared to ß-lactam plus aminoglycoside combinations (BLAG). PubMed, Embase, ISI Web of Knowledge, and Cochrane Controlled Trials Register database were searched through July 2018. We included randomized controlled clinical trials that compared DBL with BLAG combinations. Clinical response was used as the primary outcome and microbiological response in Gram-negative bacteria as the secondary outcome; sensitivity analyses were performed for Pseudomonas aeruginosa, Klebsiella spp., and Escherichia coli Heterogeneity and risk of bias were assessed. Safety results were classified by systems and organs. Thirteen studies evaluated 2,771 cases for clinical response and 665 cases for microbiological response in various Gram-negative species. DBL achieved slightly, but not significantly, better clinical response (risk ratio, 1.05; 95% confidence interval [CI], 0.99 to 1.11) and microbiological response in Gram-negatives (risk ratio, 1.11; 95% CI, 0.99 to 1.25) compared with BLAG. Sensitivity analyses by pathogen showed the same trend. No significant heterogeneity across studies was found. DBL was significantly safer than BLAG regarding renal toxicity (6.6% versus 8.8%, P = 0.0338) and ototoxicity (0.7 versus 3.1%, P = 0.0137). Other adverse events were largely comparable. Overall, empirically designed DBL showed comparable clinical and microbiological responses across different Gram-negative species, and were significantly safer than BLAG. Therefore, DBL should be rationally optimized via the latest translational approaches, leveraging mechanistic insights and newer ß-lactams for future evaluation in clinical trials.


Assuntos
Aminoglicosídeos/uso terapêutico , Antibacterianos/uso terapêutico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , beta-Lactamas/uso terapêutico , Quimioterapia Combinada , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Tobramicina/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...