Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e11017, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38362164

RESUMO

California's Channel Islands are home to two endemic mammalian carnivores: island foxes (Urocyon littoralis) and island spotted skunks (Spilogale gracilis amphiala). Although it is rare for two insular terrestrial carnivores to coexist, these known competitors persist on both Santa Cruz Island and Santa Rosa Island. We hypothesized that examination of their gut microbial communities would provide insight into the factors that enable this coexistence, as microbial symbionts often reflect host evolutionary history and contemporary ecology. Using rectal swabs collected from island foxes and island spotted skunks sampled across both islands, we generated 16S rRNA amplicon sequencing data to characterize their gut microbiomes. While island foxes and island spotted skunks both harbored the core mammalian microbiome, host species explained the largest proportion of variation in the dataset. We further identified intraspecific variation between island populations, with greater differentiation observed between more specialist island spotted skunk populations compared to more generalist island fox populations. This pattern may reflect differences in resource utilization following fine-scale niche differentiation. It may further reflect evolutionary differences regarding the timing of intraspecific separation. Considered together, this study contributes to the growing catalog of wildlife microbiome studies, with important implications for understanding how eco-evolutionary processes enable the coexistence of terrestrial carnivores-and their microbiomes-in island environments.

2.
Ticks Tick Borne Dis ; 14(2): 102106, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36516481

RESUMO

Forest thinning is a management tool used in the New Jersey Pinelands and elsewhere to improve forest health and resilience, mitigate wildfire risk, and manage for wildlife. Forest thinning leads to warmer drier microclimates, which have been shown in both field and laboratory studies to reduce tick survival and reproduction. To directly assess the effects of forest thinning on the abundance and diversity of ticks and on the prevalence of tick-borne human pathogens, we sampled ticks weekly from March to November 2021 at three replicated pairs of thinned and unthinned forest sites composed primarily of pitch-pine, shortleaf pine, and various oak species. We characterized microclimate in the understory and forest floor at each sampling plot by deploying multiple data loggers to monitor temperature and relative humidity throughout the study period. As expected, we found that thinned plots were significantly drier and warmer than unthinned plots. We also found that average questing tick abundance was 92% lower in thinned as compared with unthinned plots. Of the three main tick species collected in unthinned plots (Amblyomma americanum, Ixodes scapularis, and Dermacentor albipictus) only A. americanum and a single I. scapularis were collected in thinned plots. Prevalence of Ehrlichia species in A. americanum did not differ between treatments, and the sole I. scapularis collected in a thinned plot was infected with Borrelia burgdorferi sensu lato. However, the significant and much lower tick abundance in thinned plots indicates a lower risk of human-tick encounters. Our results add to the growing evidence that landscape and forest management can reduce local tick abundance, thereby reducing tick-borne disease risk.


Assuntos
Borrelia burgdorferi , Ixodes , Animais , Humanos , New Jersey/epidemiologia , Florestas , Animais Selvagens
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...