Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 18(1): 162, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281564

RESUMO

BACKGROUND: Colony-stimulating factor 1 (CSF1) expression in the central nervous system (CNS) increases in response to a variety of stimuli, and CSF1 is overexpressed in many CNS diseases. In young adult mice, we previously showed that CSF1 overexpression in the CNS caused the proliferation of IBA1+ microglia without promoting the expression of M2 polarization markers. METHODS: Immunohistochemical and molecular analyses were performed to further examine the impact of CSF1 overexpression on glia in both young and aged mice. RESULTS: As CSF1 overexpressing mice age, IBA1+ cell numbers are constrained by a decline in proliferation rate. Compared to controls, there were no differences in expression of the M2 markers ARG1 and MRC1 (CD206) in CSF1 overexpressing mice of any age, indicating that even prolonged exposure to increased CSF1 does not impact M2 polarization status in vivo. Moreover, RNA-sequencing confirmed the lack of increased expression of markers of M2 polarization in microglia exposed to CSF1 overexpression but did reveal changes in expression of other immune-related genes. Although treatment with inhibitors of the CSF1 receptor, CSF1R, has been shown to impact other glia, no increased expression of oligodendrocyte lineage or astrocyte markers was observed in CSF1 overexpressing mice. CONCLUSIONS: Our study indicates that microglia are the primary glial lineage impacted by CSF1 overexpression in the CNS and that microglia ultimately adapt to the presence of the CSF1 mitogenic signal.


Assuntos
Linhagem da Célula , Fator Estimulador de Colônias de Macrófagos/metabolismo , Neuroglia/metabolismo , Animais , Arginase/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Gliose , Imuno-Histoquímica , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Neuroglia/citologia , Receptores Imunológicos/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
2.
J Neuroinflammation ; 18(1): 67, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33685480

RESUMO

BACKGROUND: Alexander disease (AxD) is a rare neurodegenerative disorder that is caused by dominant mutations in the gene encoding glial fibrillary acidic protein (GFAP), an intermediate filament that is primarily expressed by astrocytes. In AxD, mutant GFAP in combination with increased GFAP expression result in astrocyte dysfunction and the accumulation of Rosenthal fibers. A neuroinflammatory environment consisting primarily of macrophage lineage cells has been observed in AxD patients and mouse models. METHODS: To examine if macrophage lineage cells could serve as a therapeutic target in AxD, GFAP knock-in mutant AxD model mice were treated with a colony-stimulating factor 1 receptor (CSF1R) inhibitor, pexidartinib. The effects of pexidartinib treatment on disease phenotypes were assessed. RESULTS: In AxD model mice, pexidartinib administration depleted macrophages in the CNS and caused elevation of GFAP transcript and protein levels with minimal impacts on other phenotypes including body weight, stress response activation, chemokine/cytokine expression, and T cell infiltration. CONCLUSIONS: Together, these results highlight the complicated role that macrophages can play in neurological diseases and do not support the use of pexidartinib as a therapy for AxD.


Assuntos
Doença de Alexander , Aminopiridinas/farmacologia , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Pirróis/farmacologia , Doença de Alexander/metabolismo , Doença de Alexander/patologia , Animais , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...