Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 261: 122034, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38996729

RESUMO

Urine has an intricate composition with high concentrations of organic compounds like urea, creatinine, and uric acid. Urine poses a formidable challenge for advanced effluent treatment processes following urine diversion strategies. Urine matrix complexity is heightened when dealing with pharmaceutical residues like acetaminophen (ACT) and metabolized pharmaceuticals. This work explores ACT degradation in synthetic, fresh real, and hydrolyzed real urines using electrochemical oxidation with a dimensional stable anode (DSA). Analyzing drug concentration (2.5 - 40 mg L-1) over 180 min at various current densities in fresh synthetic effluent revealed a noteworthy 75% removal at 48 mA cm-2. ACT degradation kinetics and that of the other organic components followed a pseudo-first-order reaction. Uric acid degradation competed with ACT degradation, whereas urea and creatinine possessed higher oxidation resistance. Fresh real urine presented the most challenging scenario for the electrochemical process. Whereas, hydrolyzed real urine achieved higher ACT removal than fresh synthetic urine. Carboxylic acids like acetic, tartaric, maleic, and oxalic were detected as main by-products. Inorganic ionic species nitrate, nitrite, and ammonium ions were released to the medium from N-containing organic compounds. These findings underscore the importance of considering urine composition complexities and provide significant advancements in strategies for efficiently addressing trace pharmaceutical contamination.

2.
Water Res X ; 23: 100227, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38765691

RESUMO

Phosphorus (P) is a finite resource and necessary nutrient for agriculture. Urine contains a higher concentration of P than domestic wastewater, which can be recovered by source separation and treatment (hereafter urine diversion). Commercial and institutional (CI) buildings are a logical location for urine diversion since restrooms account for a substantial fraction of water use and wastewater generation. This study estimated the potential for P recovery from human urine and water savings from reduced flushing in CI buildings, and proposed an approach to identify building types and community layouts that are amenable to implementing urine diversion. The results showed that urine diversion is most advantageous in CI buildings with either high daily occupancy counts or times, such as hospitals, schools, office buildings, and airports. Per occupant P recovery benchmarks were estimated to be between 0.04-0.68 g/cap·d. Per building P recovery rates were estimated to be between 0.002-5.1 kg/d, and per building water savings were estimated to be between 3 and 23 % by volume. Recovered P in the form of phosphate fertilizer and potable water savings could accrue profits and cost reductions that could offset the capital costs of new urine diversion systems within 5 y of operation. Finally, urine diversion systems can be implemented at different levels of decentralization based on community layout and organizational structure, which will require socioeconomic and policy acceptance for wider adoption.

3.
Water Res X ; 22: 100218, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38516567
4.
Water Res X ; 22: 100211, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38298331

RESUMO

Among the various substances found in the feed source for the production of ultrapure water (UPW), urea is challenging to remove because it is a small molecular weight molecule that is not easily oxidized and does not carry a charge under neutral pH conditions. Urease enzyme, found in various organisms such as plants and bacteria, catalyze the hydrolysis of urea into carbon dioxide and ammonia. In this study, urease was immobilized on the polyamide layer of a reverse osmosis (RO) membrane to remove urea in UPW systems. The removal efficiency of urea by urease-coated RO membrane showed up to 27.9 % higher urea removal efficiency compared to the pristine membrane. This increase in urea removal can be attributed to both physical and biological effects from the urease coating on the membrane. Firstly, urease on the membrane surface can act as an additional physical barrier for urea to pass through. Secondly, urea can be hydrolyzed by the enzyme when it passes through the urease-coated RO membrane. In a two-pass RO system typical for UPW production, the removal of urea by a urease-coated membrane would be enhanced by twofold. This overall method can significantly increase the removal efficiency of urea in UPW systems, especially when considering the compounded removal by the urease coating, rejection by RO, and additional reactions by other treatment processes. Moreover, urea in UPW systems can be removed without the installment of additional processes by simply coating urease on the existing RO membranes.

5.
Water Sci Technol ; 88(9): 2443-2452, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966193

RESUMO

An increased fertilizer application for agricultural purposes has resulted in increased nitrate (NO3-) levels in surface water and groundwater around the globe, highlighting demand for a low-maintenance NO3- treatment technology that can be applied to nonpoint sources. Ion exchange (IEX) is an effective NO3- treatment technology and research has shown that bioregeneration of NO3- laden resins has the potential to minimize operational requirements and brine waste production that often prevents IEX application for decentralized treatment. In this work, batch denitrification experiments were conducted using solutions with low IEX selectivity capable of supporting the growth of denitrifying bacteria, while minimizing NO3- desorption from resins, encouraging resin-phase denitrification. Although only 15% of NO3- was desorbed by the low selectivity solution, this initial desorption started a cycle in which desorbed NO3- was biologically transformed to NO2-, which further desorbed NO3- that could be biotransformed. Denitrification experiments resulted in a 43% conversion rate of initially adsorbed NO3-, but biotransformations stopped at NO2- due to pH limitations. The balance between adsorption equilibria and biotransformation observed in this work was used to propose a continuous-flow reactor configuration where gradual NO3- desorption might allow for complete denitrification in the short retention times used for IEX systems.


Assuntos
Desnitrificação , Dióxido de Nitrogênio , Troca Iônica , Nitratos/metabolismo , Água
7.
Water Res ; 243: 120324, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451124

RESUMO

Anion exchange resin (AER) and granular activated carbon (GAC) have emerged as prominent technologies for treatment of waters contaminated with per- and polyfluoroalkyl substances (PFASs). This study compares the life cycle environmental impacts and life cycle costs of remediating PFAS-contaminated groundwater with these competing technologies, using field pilot data to inform model inputs. Comparative analysis indicates that AER systems employing single-use "PFAS-selective" resins have lower environmental impacts and costs than systems using regenerable resins or GAC adsorbents, supporting its use in future remediation efforts. Use of GAC operated as a single-use adsorbent led to the highest emissions as well as the highest treatment costs, with thermally-reactivated GAC proving to be less impactful than regenerable AER treatment. Sensitivity analyses highlighted the dominance of media usage rate (MUR), which is highly dependent on the selected PFAS treatment goals, to determine environmental impacts and costs over a 30-year system life cycle. Selection of very stringent changeout criteria (e.g., detection of any PFASs in effluent) significantly reduces the advantages of single-use resins. For regenerable AER, environmental impacts were dominated by management of the PFAS-contaminated brine/co-solvent waste stream used to regenerate the adsorbent, as well as the cosolvent content of the regenerant mixture and the cosolvent recovery efficiency achieved via on-site distillation. High impacts estimated for GAC adsorption, the result of high MUR relative to ion exchange media, can be significantly reduced if spent adsorbents are reused after thermal reactivation, but impacts are still greater than those predicted for single-use ion exchange systems. Findings are expected to hold across a range of diverse sites, including drinking water systems treating more dilute sources of PFAS contamination, as PFAS breakthrough was not found to be highly sensitive to sourcewater PFAS concentrations.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Animais , Carvão Vegetal , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Ânions/análise , Resinas de Troca Aniônica , Custos e Análise de Custo , Estágios do Ciclo de Vida
8.
Water Sci Technol ; 88(2): 486-501, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37522447

RESUMO

Human urine is a readily available nutrient source that can complement commercial fertilizer production, which relies on finite mineral resources and global supply chains. This study evaluated the effectiveness of a simplified solar distillation process for urine to recover phosphorus (P) and nitrogen for agricultural use and water for non-potable purposes. Synthetic fresh, synthetic hydrolyzed, real fresh, and real hydrolyzed urine were exposed to direct sunlight for 6 h in a simple distillation apparatus, which produced distillation bottoms and distillate. Metal phosphate precipitation in the distillation bottoms was evaluated to recover P. The non-potable water was recovered as distillate. Hydrolyzed urine recovered more metal phosphate solid in the distillation bottoms and had a higher conductivity in the distillate than fresh urine. Hydrolyzed urine also achieved greater distillate volume recovery than fresh urine. Hydrolyzed urine had a greater presence of UV-absorbing organics in the distillate than fresh urine and therefore produced a lower-quality product water. There was no significant correlation between the daily high air temperature and the volume of distillate recovered. This study provides a comprehensive data set on simplified solar distillation of human urine considering the fate of nutrients and water for different types of urine.


Assuntos
Luz Solar , Purificação da Água , Humanos , Fosfatos , Fósforo , Minerais , Água , Metais , Urina
9.
Water Res X ; 19: 100168, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36793852

RESUMO

Phosphorus (P) is a finite resource, and its environmental fate and transport is complex. With fertilizer prices expected to remain high for years and disruption to supply chains, there is a pressing need to recover and reuse P (primarily as fertilizer). Whether recovery is to occur from urban systems (e.g., human urine), agricultural soil (e.g., legacy P), or from contaminated surface waters, quantification of P in various forms is vital. Monitoring systems with embedded near real time decision support, so called cyber physical systems, are likely to play a major role in the management of P throughout agro-ecosystems. Data on P flow(s) connects the environmental, economic, and social pillars of the triple bottom line (TBL) sustainabilty framework. Emerging monitoring systems must account for complex interactions in the sample, and interface with a dynamic decision support system that considers adaptive dynamics to societal needs. It is known from decades of study that P is ubiquitous, yet without quantitative tools for studying the dynamic nature of P in the environment, the details may remain elusive. If new monitoring systems (including CPS and mobile sensors) are informed by sustainability frameworks, data-informed decision making may foster resource recovery and environmental stewardship from technology users to policymakers.

10.
Water Res X ; 17: 100159, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36387934

RESUMO

The underlying chemistry of weak-base (WB) anion exchange resins (AERs) for contaminant removal from water is not well documented in the literature. To address this, batch adsorption experiments were conducted at pH 4, 7, and 10 using two representative WB-AERs (polyacrylic IRA67 and polystyrene IRA96) and two representative strong-base (SB) AERs (polyacrylic IRA458 and polystyrene A520E), of differing polymer composition, for the removal of nitrate, sulfate, 3-phenylpropionic acid (3-PPA) as surrogate for natural organic matter, and six perfluoroalkyl acids (PFAAs). Under acidic (pH 4) and neutral (pH 7) conditions, the selectivity of AERs for each contaminant was predominantly influenced by polymer composition followed by the size of the resin functional group. This result reflected the WB-AERs being fully protonated and functioning identical to SB-AERs. Isotherm model parameters revealed WB-AER had higher capacity than SB-AER with analogous polymer composition and porosity regardless of resin selectivity for each contaminant. Under basic conditions (≥ pH 10), contaminant removal by WB-AERs declined due to deprotonation of the tertiary amine functional groups. Removal of PFAAs by the more hydrophobic polystyrene WB-AER (IRA96) remained approximately constant with changing pH, which was possibly due to electrostatic interactions with remaining protonated amine functional groups on the resin.

11.
Water Res ; 223: 119019, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049246

RESUMO

This study reports the results of an 8-month pilot study comparing both regenerable and emerging single-use anion exchange resins (AERs) for treatment of per- and polyfluoroalkyl substances (PFASs) at a source zone impacted by historical use of aqueous film-forming foam (AFFF). Two regenerable (Purolite A860 and A520E) and three single-use (Purolite PFA694E, Calgon CalRes 2301, and Dowex PSR2+) AERs were tested in parallel, collecting effluent samples after treatment for 30-sec and 2-min total empty bed contact time (EBCT). Results demonstrate that single-use AERs significantly outperform regenerable resins, particularly for treatment of long-chain perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs). No detectable concentrations of ≥C7 PFCAs or PFSAs were observed within 150,000 bed volumes (BVs) after treatment with the single-use resins (2-min EBCT). Analysis of effluent samples following 30-sec EBCT treatment shows that even the shortest-chain PFSAs do not reach 50% breakthrough within the first 350,000 BVs, though differences in removal of short-chain PFCAs was less dramatic. The regenerable polyacrylic A860 resin performed very poorly compared to all polystyrene resins, with >90% breakthrough of all PFASs occurring within 10,000 BVs. The greater affinity of polystyrene resins is attributed to increased hydrophobic interactions in addition to electrostatic ion exchange. Analysis of breakthrough profiles reveals empirical correlation with ion exchange affinity coefficients (logKex) measured in batch experiments. Postmortem analysis of PFASs extracted from spent resins revealed chromatographic elution behavior and competition among PFASs for adsorption to the resins. PFSAs and long-chain PFCAs were preferentially adsorbed to earlier sections in the AER columns, whereas short-chain PFCAs were competitively displaced towards the later sections of the columns and into the effluent, consistent with effluent concentrations of the latter structures exceeding influent values. These results provide insights into the mechanisms that govern PFAS adsorption to AERs in real multisolute groundwater matrices and support findings from other diverse sites regarding PFAS affinity, elution behavior, and competition for exchange sites.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Resinas de Troca Aniônica/química , Ácidos Carboxílicos/análise , Fluorocarbonos/química , Projetos Piloto , Poliestirenos , Ácidos Sulfônicos , Poluentes Químicos da Água/química
12.
Chemosphere ; 307(Pt 3): 135850, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35964717

RESUMO

Basic oxygen furnace (BOF) and blast furnace (BF) steel slags are well suited for phosphorous (P) removal from nonpoint sources such as agricultural runoff. However, the reported mechanism(s) of removal varies from study to study which complicates implementation for unique environmental conditions that may interfere with the removal mechanism(s). This work compared laboratory column experiments and field filter experiments to provide insights on the influence of relevant field conditions (water alkalinity, slag grain size distribution, BF:BOF slag ratio, and water stagnation) on P removal by BF and BOF steel slag mixtures. Alkalinity was the most influential variable in lab-scale slag columns that received 250 mg/L alkalinity water and achieved complete P removal throughout the 3-h experiment, while identical columns receiving 500 mg/L alkalinity water averaged 52% P removal and only 14% removal after 2.5 h. Batch regeneration and adsorption experiments were conducted on the exhumed BOF/BF slag mixture from the field filter to evaluate strategies for increasing field P removal capacity. The adsorption capacity of steel slags was effectively regenerated by 0.01 M Al2(SO4)3, which allowed for an additional 34% P removal in batch adsorption tests. The acid neutralization capacity of slag samples was effectively regenerated by 1 M NaOH, which allowed previously expended slag to reach a pH of 9.7 even in high alkalinity test water. The results presented here show that BF slag and Al2(SO4)3 regeneration of BF slag is best suited for high alkalinity influent conditions and removes P through adsorption while BOF slag and NaOH regeneration perform best under low alkalinity conditions and removes P through mineral precipitation.

13.
Environ Dev Sustain ; 24(2): 1713-1737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34007242

RESUMO

As the global population is projected to increase by two billion people by 2050, so will the demand for phosphorus (P), an essential nutrient for all living organisms and a major driver of eutrophication. To sustainably meet these challenges, we apply the conceptual framework of transition management (TM) to demonstrate how the trajectory of the current linear P use system could be strategically shifted toward a more circular P system. We present US case studies to examine P transitions management in intensive agriculture, wastewater disposal, and food waste management. Our goal is twofold. By first understanding past transitions in P management in the USA, we can build upon these insights for future management. This can then be applied to other global regions such as developing countries to bypass stages of transition as they intensify agriculture, incorporate sewers into cities, and expand waste management, to avoid becoming entrenched in unsustainable P management. We suggest how spaces for experimentation and collaboration can be created, how and which actor networks can be mobilized, and what action strategies and policies can be recommended to accelerate their transition to P sustainability. Our case studies show that while substantial improvements have been made, the transition toward a circular economy of P is far from complete. Our findings point to the value of utilizing TM for future progress in the US Development of TM frameworks for managing P in other regions of the world may enable them to achieve sustainable P development faster and more effectively than the USA.

14.
AWWA Water Sci ; 3(5): e1239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901766

RESUMO

A one-day water sampling and flushing study was conducted for three schools in Maricopa County that experienced prolonged building inactivity due to the COVID-19 pandemic: an elementary school, middle school, and high school. Grab samples were taken at hand washing sinks, water fountains, and hose bibbs before and after flushing. Samples were analyzed for free chlorine, UVA254, copper, lead, total trihalomethanes, pH, conductivity, temperature, and Legionella species. All three schools experienced an increase in free chlorine post-flush. Copper concentrations were higher for first draw samples than post-flush samples for all schools. Conductivity, temperature, and pH did not see a major change after flushing. UVA254 values decreased after flushing. Bromoform species saw a 20% increase after flushing at the elementary school. Legionella spp. did not decrease post-flush at the elementary school. Overall, flushing changed the water quality at the schools. However, equipment flushing may be necessary to fully remediate Legionella spp. ARTICLE IMPACT STATEMENT: Prolonged closure of buildings causes water quality issues such as lack of disinfectant and Legionella. Flushing can restore water quality.

15.
Water Res ; 207: 117798, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34768102

RESUMO

Although anion exchange resin (AER) treatment is considered an effective technology for removing per- and polyfluoroalkyl substances (PFASs) from impacted water, the environmental impacts associated with AER regeneration have not been systematically explored. In particular, the trade-offs of altering the composition of the regeneration solution and disposing of or recycling the waste regeneration solution are not known. To fill these important gaps in the literature, this research conducted a comparative life cycle assessment (LCA) of an AER-based PFAS remediation system with different regeneration scenarios including disposing of waste regeneration solution via incineration, reusing the organic cosolvent and brine fractions of the waste regeneration solution, and altering the composition of the regeneration solution to avoid organic cosolvent or NaCl. The results show that disposing of waste regeneration solution via incineration, without recycling organic cosolvent or brine, had the greatest environmental impact, and that incineration accounted for the greatest impact among contributing processes. Recycling of the cosolvent (or cosolvent and brine) fraction of the waste regeneration solution resulted in lower environmental impacts due to reduced mass of waste disposed of via incineration. Replacing NaCl in the brine with an alternative salt resulted in higher environmental impacts, with salts derived from chemical production, such as ammonium chloride and potassium carbonate, showing the largest increases in impacts. The results of this research highlight the importance of understanding the fate of PFASs during incineration, and the need for PFAS destruction technologies that can be coupled to AER regeneration to avoid incineration.


Assuntos
Resinas de Troca Aniônica , Fluorocarbonos , Animais , Meio Ambiente , Fluorocarbonos/análise , Incineração , Estágios do Ciclo de Vida , Água
16.
Water Res ; 200: 117244, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34089925

RESUMO

A key gap in the literature on the treatment of per- and polyfluoroalkyl substances (PFAS) in impacted water is the absence of a review article dedicated to anion exchange resin (AER) treatment. This gap is important because previous research has consistently shown adsorption by AER to be one of the most effective treatment processes for PFAS removal from impacted water, and AER is one of the most commonly deployed technologies in the field. Given the scope of the previous review articles on PFAS removal by various adsorbent types, the sections on AER do not explore the full depth of PFAS and AER interactions nor cover the breadth of AER testing conditions. Accordingly, the goal of this paper was to critically review the available peer-reviewed literature on PFAS removal from water by AER. The specific objectives of the review were to synthesize the previous literature results on (1) batch adsorption behavior, (2) impact of water chemistry conditions, (3) continuous-flow adsorption, (4) adsorption modeling, (5) regeneration, and (6) weak-base AER. Following from critical review of the literature, the future research priorities discussed include: (i) improving the underlying science that governs PFAS-resin interactions, (ii) improving methods for resin regeneration and management of PFAS-contaminated concentrate streams, and (iii) comparative life cycle environmental and economic analyses for ion exchange treatment systems relative to competing technologies.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Resinas de Troca Aniônica , Fluorocarbonos/análise , Água , Poluentes Químicos da Água/análise
17.
Environ Sci Technol ; 55(8): 5001-5011, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33749259

RESUMO

Despite benefits to the firefighting industry, the release of per- and polyfluoroalkyl substances (PFASs) from aqueous film-forming foam (AFFF) into aquatic systems poses significant risks to human health and other organisms. While anion-exchange technologies have proven to be effective for removing perfluoroalkyl acids (PFAAs) from water, their effectiveness for removing the diverse PFAS structures discovered in AFFF remains unknown. Here, we report on the adsorption of 75 PFASs, including 63 polyfluorinated substances, in a diluted AFFF mixture using 14 commercially available ion-exchange (IX)/nonionic resins and granular activated carbon (GAC). Results showed that anion-exchange resins (AERs) exhibited significant adsorption of PFASs compared to cation-exchange resins (CERs), nonionic resins (NIRs), and GAC regardless of the PFAS's predicted charge. Isotherm data showed that macroporous AERs have a higher PFAS adsorption capacity compared to gel-type AERs. Cross-correlation comparison of PFAS/Cl- selectivity coefficients (Kex) for each PFAS-AER combination showed that the hydrophobicity of the AER functional group, and polymer matrix played a dominant role in determining resin affinity for PFASs. PFAS structural characteristics also significantly affected adsorption, with increasing chain length and a net negative charge increasing the extent of adsorption. Results from this study provide guidelines for the selection of resins to adsorb a wider range of PFASs and meaningful insights for the development of quantitative models for IX treatment of AFFF-impacted water.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Aerossóis , Carvão Vegetal , Fluorocarbonos/análise , Humanos , Água , Poluentes Químicos da Água/análise
18.
Water Res ; 189: 116661, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254071

RESUMO

Dissolved organic matter (DOM) in water has adverse impacts on the water treatment process and is effectively removed by ion exchange (IEX). Some researchers have proposed the term biological ion exchange (BIEX) for the process of continuous DOM removal by ion exchange without the need for chemical regeneration that results in brine waste. Surface water with moderate dissolved organic carbon (DOC) concentrations (4-6 mg/L) and high sulfate concentrations (80 - 120 mg/L) was fed to two regenerated and two non-regenerated columns for 12,500 bed volumes (9 months) with the goal of investigating the effects of chemical and possibly biological regeneration on long-term IEX operation. Chemically regenerated columns achieved between 60 and 80% DOC removal for the entirety of the experiment, while non-regenerated columns achieved steady DOC removal of ~50%. Inorganic ion analysis showed that biological activity had minimal impact on DOC removal, and the main mechanism of removal was secondary IEX between sulfate (SO42-) and fractions of DOC with high affinities for ion exchange. Fluorescence and specific UV absorbance at 254 nm (SUVA 254) data showed that fractions of DOC with higher SUVA 254 values (terrestrial-like fractions) were better removed by secondary IEX than those with lower SUVA 254 values (aquatic/microbial-like fractions). Scanning electron microscopy showed that biofilms on non-regenerated resins covered 5-15% of the resin surface and are composed of numerous species of bacteria with varying functions, with some protozoa present.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Carbono , Troca Iônica , Sulfatos , Poluentes Químicos da Água/análise
19.
Chemosphere ; 268: 128849, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33176915

RESUMO

There is limited research comparing nutrient removal in concentrated and dilute waste streams. Accordingly, the goal of this research was to study the effect of dilution on ammonium and potassium removal from real hydrolyzed urine using natural zeolites. The performance of two natural zeolites, clinoptilolite and chabazite, was studied and compared using batch equilibrium experiments at four dilution levels defined as urine volume divided by total solution volume (expressed as a percent): 100%, 10%, 1% and 0.1%. The adsorption behavior of other exchangeable ions, namely sodium, calcium, and magnesium, in clinoptilolite and chabazite was studied to improve the understanding of ion exchange stoichiometry. Ammonium and potassium removals were highest in undiluted urine samples treated with clinoptilolite or chabazite. This is a key finding as it illustrates the benefit of collecting undiluted urine via source separation. High removal of ammonium and potassium by clinoptilolite and chabazite was also achieved in 10% urine solutions, which are representative of water-efficient flush systems and show that nutrient recovery is possible for diluted urine as well. Chabazite showed higher ammonium and much higher potassium removal than clinoptilolite. Finally, the results showed that clinoptilolite and chabazite demonstrated stoichiometric exchange between ammonium and potassium in urine solutions with mobile cations in the zeolites.


Assuntos
Compostos de Amônio , Zeolitas , Adsorção , Troca Iônica , Potássio
20.
Environ Sci Technol ; 54(18): 11556-11565, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786574

RESUMO

Forward osmosis (FO) is a low-pressure membrane process that can selectively separate low molecular weight neutral compounds such as ammonia from urine. However, an understanding of how un-ionized ammonia transfers is vital for maximizing ammonia recovery. Therefore, this research aimed to determine the transport behavior of low molecular weight neutral nitrogen compounds in order to maximize ammonia recovery from real hydrolyzed human urine by FO. Using urea as a model, batch FO experiments concluded that low molecular weight neutral compound transfer is dependent on concentration equilibrium between the feed and draw solutions due to its ability to freely move across the FO membrane. Therefore, 50% recovery is the theoretical maximum that could be achieved. However, novel strategic pH manipulation between the feed and the draw solution allowed for up to 86% recovery of ammonia by keeping the draw solution pH < 6.5 and the feed solution pH > 11, overcoming the 50% recovery barrier. An economic analysis showed that ammonia recovery by FO has the potential to be more economically favorable compared to ammonia air stripping or ion exchange if the proper draw solute is chosen.


Assuntos
Amônia , Purificação da Água , Humanos , Membranas Artificiais , Osmose , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...