Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099450

RESUMO

Anthropogenic noise is becoming a major underwater pollutant because of rapidly increasing boat traffic worldwide. But its impact on aquatic organisms remains largely unknown. Previous studies have focused mainly on high-frequency and impulsive noises (i.e. sonar); however, boat noise is more pervasive, continuous, and its highest intensity and component frequencies overlap the auditory bandwidth of most fishes. We assessed the impacts of boat noise on saccular sensory hair cell density and hearing thresholds of a soniferous species, Atlantic croaker (Micropogonias undulatus). In two laboratory experiments, individuals were subjected to simulated boat noise: a single 15-min exposure and 3 days of intermittent noise (simulating passing vessels). Immediately after both experiments, fish were either (1) tested for hearing sensitivity with auditory evoked potential (AEP) tests or (2) euthanized for fluorescent phalloidin and TUNEL labeling for hair cell density counts. Relative to controls, no differences were observed in auditory thresholds nor hair cell density between individuals subjected to a single 15-min noise exposure. However, fish from the 3-day experiment showed decreased sensory hair cell density, increased apoptotic cells, and higher hearing thresholds than control fish at 300, 800 and 1000 Hz. Our results demonstrate that impacts from boat noise depend upon the duration and frequency of exposure. For a species reliant on vocalization for communication, these impacts may hinder spawning success, increase predation risks and significantly alter the ecosystem.


Assuntos
Perciformes , Navios , Animais , Ecossistema , Audição , Perciformes/fisiologia , Células Ciliadas Auditivas/fisiologia , Peixes/fisiologia , Limiar Auditivo/fisiologia
2.
J Morphol ; 279(12): 1849-1871, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30443931

RESUMO

The Weberian apparatus of otophysan fishes confers acute hearing that is hypothesized to allow these fishes to assess the environment and to find food resources. The otophysan family Serrasalmidae (piranhas and pacus) includes species known to feed on falling fruits and seeds (frugivore/granivores) that splash in rivers, herbivorous species associated with torrents and rapids (rheophiles), and carnivores that feed aggressively within shoals. Relevant sound stimuli may vary among these ecological groups and hearing may be tuned to different cues among species. In this context, we examined size variation of the Weberian ossicles, swim bladder chambers, and otoliths of 20 serrasalmid species from three broad feeding ecologies: frugivore/granivores, rheophiles, and carnivores. We performed 3D-reconstructions of high resolution tomographic data (µCT) from 54 museum specimens to estimate the size of these elements. We then tested for an ecology effect on covariation of auditory structure size and body size and accounted for phylogeny with phylogenetic generalized least squares analyses. Among ecological groups, we observed differences in relative sizes of otoliths associated with sound pressure and particle motion detection, and variation in Weberian ossicle size that may impact sound transmission. Rheophiles, which live in noisy environments, possess the strongest modifications of these structures.


Assuntos
Estimulação Acústica , Sacos Aéreos/anatomia & histologia , Caraciformes/anatomia & histologia , Fenômenos Ecológicos e Ambientais , Membrana dos Otólitos/anatomia & histologia , Animais , Ossículos da Orelha/anatomia & histologia , Imageamento Tridimensional , Funções Verossimilhança , Tamanho do Órgão , Filogenia , Especificidade da Espécie , Microtomografia por Raio-X
3.
J Exp Biol ; 218(Pt 18): 2881-91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26206358

RESUMO

A variety of teleost fishes produce sounds for communication by vibrating the swim bladder with fast contracting muscles. Doradid catfishes have an elastic spring apparatus (ESA) for sound production. Contractions of the ESA protractor muscle pull the anterior transverse process of the 4th vertebra or Müllerian ramus (MR) to expand the swim bladder and elasticity of the MR returns the swim bladder to the resting state. In this study, we examined the sound characteristics and associated fine structure of the protractor drumming muscles of three doradid species: Acanthodoras cataphractus, Platydoras hancockii and Agamyxis pectinifrons. Despite large variations in size, sounds from all three species had similar mean dominant rates ranging from 91 to 131 Hz and showed frequencies related to muscle contraction speed rather than fish size. Sounds differed among species in terms of waveform shape and their rate of amplitude modulation. In addition, multiple distinguishable sound types were observed from each species: three sound types from A. cataphractus and P. hancockii, and two sound types from A. pectinifrons. Although sounds differed among species, no differences in muscle fiber fine structure were observed at the species level. Drumming muscles from each species bear features associated with fast contractions, including sarcoplasmic cores, thin radial myofibrils, abundant mitochondria and an elaborated sarcoplasmic reticulum. These results indicate that sound differences between doradids are not due to swimbladder size, muscle anatomy, muscle length or Müllerian ramus shape, but instead result from differences in neural activation of sonic muscles.


Assuntos
Sacos Aéreos/fisiologia , Comunicação Animal , Peixes-Gato/fisiologia , Contração Muscular/fisiologia , Som , Sacos Aéreos/anatomia & histologia , Animais , Peixes-Gato/anatomia & histologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia
4.
J Exp Biol ; 218(Pt 10): 1572-84, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25805700

RESUMO

Fish produce context-specific sounds during social communication, but it is not known how acoustic behaviors have evolved in relation to specializations of the auditory system. Butterflyfishes (family Chaetodontidae) have a well-defined phylogeny and produce pulsed communication sounds during social interactions on coral reefs. Recent work indicates that two sound production mechanisms exist in the bannerfish clade and that other mechanisms are used in the Chaetodon clade, which is distinguished by an auditory specialization, the laterophysic connection (LC). Here, we determine the kinematic action patterns associated with sound production during social interactions in four Chaetodon subgenera and the non-laterophysic fish Forcipiger flavissimus. Some Chaetodon species share the head bob acoustic behavior with F. flavissimus, which along with other sounds in the 100-1000 Hz spectrum, are probably adequate to stimulate the ear, swim bladder or LC of a receiver fish. In contrast, only Chaetodon species produced the tail slap sound, which involves a 1-30 Hz hydrodynamic pulse that is likely to stimulate the receiver's ear and lateral line at close distances, but not the swim bladder or LC. Reconstructions of ancestral character states appear equivocal for the head bob and divergent for the tail slap acoustic behaviors. Independent contrast analysis shows a correlation between sound duration and stimulus intensity characters. The intensities of the tail slap and body pulse sounds in Chaeotodon species are correlated with body size and can provide honest communication signals. Future studies on fish acoustic communication should investigate low-frequency and infrasound acoustic fields to understand the integrated function of the ear and lateral line, and their evolutionary patterns.


Assuntos
Comunicação Animal , Perciformes/fisiologia , Comportamento Social , Som , Sacos Aéreos/fisiologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Tamanho Corporal , Filogenia , Especificidade da Espécie
5.
J Exp Biol ; 218(Pt 10): 1585-95, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25722003

RESUMO

Butterflyfishes are conspicuous members of coral reefs that communicate with acoustic signals during social interactions with mates and other conspecifics. Members of the genus Chaetodon have a laterophysic connection (LC) - a unique association of anterior swim bladder horns and the cranial lateral line - but the action of the LC system on auditory sensitivity is unexplored. Here, we show in baseline auditory evoked potential threshold experiments that Forcipiger flavissimus (which lacks swim bladder horns and LC) is sensitive to sound tones from 100 Hz up to 1000 Hz, and that thresholds for three species of Chaetodon are 10-15 dB lower, with extended hearing ranges up to 1700-2000 Hz. The relatively high thresholds to sound pressure and low pass response near 500 Hz for all four species are consistent with a primary sensitivity to hydrodynamic particle acceleration rather than sound pressure. Deflation of the swim bladder in F. flavissimus had no measurable effect on auditory sensitivity. In contrast, displacement of gas from the swim bladder horns in Chaetodon multicinctus and Chaetodon auriga increased thresholds (decreased sensitivity) by 5-20 dB, with the greatest effect at 600 Hz. The evolution of swim bladder horns associated with the LC system in Chaetodon species has increased hearing sensitivity through sound pressure transduction in the frequency bands used for social acoustic communication. The close affiliative behaviors that are common in Chaetodon species and other butterflyfish facilitate sound perception and acoustic communication at close distances relative to the high background noise levels found in their natural reef environment.


Assuntos
Comunicação Animal , Perciformes/fisiologia , Sacos Aéreos/fisiologia , Animais , Recifes de Corais , Potenciais Evocados Auditivos , Audição , Sistema da Linha Lateral/fisiologia , Som
6.
Proc Biol Sci ; 281(1791): 20141197, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25080341

RESUMO

Elucidating the origins of complex biological structures has been one of the major challenges of evolutionary studies. Within vertebrates, the capacity to produce regular coordinated electric organ discharges (EODs) has evolved independently in different fish lineages. Intermediate stages, however, are not known. We show that, within a single catfish genus, some species are able to produce sounds, electric discharges or both signals (though not simultaneously). We highlight that both acoustic and electric communication result from actions of the same muscle. In parallel to their abilities, the studied species show different degrees of myofibril development in the sonic and electric muscle. The lowest myofibril density was observed in Synodontis nigriventris, which produced EODs but no swim bladder sounds, whereas the greatest myofibril density was observed in Synodontis grandiops, the species that produced the longest sound trains but did not emit EODs. Additionally, S. grandiops exhibited the lowest auditory thresholds. Swim bladder sounds were similar among species, while EODs were distinctive at the species level. We hypothesize that communication with conspecifics favoured the development of species-specific EOD signals and suggest an evolutionary explanation for the transition from a fast sonic muscle to electrocytes.


Assuntos
Comunicação Animal , Evolução Biológica , Peixes-Gato/fisiologia , Órgão Elétrico/fisiologia , Som , Sacos Aéreos/fisiologia , Animais , Limiar Auditivo , Peixes-Gato/classificação , Peixe Elétrico/fisiologia , Miofibrilas/fisiologia , Especificidade da Espécie
7.
J Exp Biol ; 217(Pt 19): 3432-40, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25063851

RESUMO

In teleosts, superfast muscles are generally associated with the swimbladder wall, whose vibrations result in sound production. In Ophidion rochei, three pairs of muscles were named 'sonic' because their contractions affect swimbladder position: the dorsal sonic muscle (DSM), the intermediate sonic muscle (ISM), and the ventral sonic muscle (VSM). These muscles were investigated thanks to electron microscopy and electromyography in order to determine their function in sound production. Fibers of the VSM and DSM were much thinner than the fibers of the ISM and epaxial musculature. However, only VSM fibers had the typical ultrastructure of superfast muscles: low proportion of myofibrils, and high proportions of sarcoplasmic reticulum and mitochondria. In females, each sound onset was preceded by the onset of electrical activity in the VSM and the DSM (ISM was not tested). The electromyograms of the VSM were very similar to the waveforms of the sounds: means for the pulse period were 3.6±0.5 and 3.6±0.7 ms, respectively. This shows that the fast VSM (ca. 280 Hz) is responsible for the pulse period and fundamental frequency of female sounds. DSM electromyograms were generally characterized by one or two main peaks followed by periods of lower electrical activity, which suggests a sustained contraction over the course of the sound. The fiber morphology of the ISM and its antagonistic position relative to the DSM are not indicative of a muscle capable of superfast contractions. Overall, this study experimentally shows the complexity of the sound production mechanism in the nocturnal fish O. rochei.


Assuntos
Sacos Aéreos/fisiologia , Peixes/anatomia & histologia , Peixes/fisiologia , Músculo Esquelético/fisiologia , Vocalização Animal , Sacos Aéreos/ultraestrutura , Animais , Eletromiografia , Feminino , Masculino , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/ultraestrutura , Miofibrilas
8.
J Morphol ; 275(6): 650-60, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24425669

RESUMO

Juveniles, females, and males of Ophidion rochei share similar external morphology, probably because they are mainly active in the dark, which reduces the role of visual cues. Their internal sonic apparatuses, however, are complex: three pairs of sonic muscles, and highly modified vertebrae and ribs are involved in sound production. The sonic apparatus of males differs from juveniles and females in having larger swimbladder plates (modified ribs associate with the swimbladder wall) and sonic muscles, a modified swimbladder shape and a mineralized structure called the "rocker bone" in front of the swimbladder. All of these male traits appear at the onset of sexual maturation. This article investigates the relationship between morphology and sounds in male O. rochei of different sizes. Despite their small size range total length (133-170 mm TL), the five specimens showed pronounced differences in sound-production apparatus morphology, especially in terms of swimbladder shape and rocker bone development. This observation was reinforced by the positive allometry measured for the rocker bone and the internal tube of the swimbladder. The differences in morphology were related to marked differences in sound characteristics (especially frequency and pulse duration). These results suggest that male calls carry information about the degree of maturity. Deprived of most visual cues, ophidiids probably have invested in other mechanisms to recognize and distinguish among individual conspecifics and between ophidiid species. As a result, their phenotypes are externally similar but internally very different. In these taxa, the great variability of the sound production apparatus means this complex system is a main target of environmental constraints.


Assuntos
Peixes/anatomia & histologia , Peixes/fisiologia , Vocalização Animal , Sacos Aéreos/anatomia & histologia , Sacos Aéreos/fisiologia , Animais , Tamanho Corporal , Osso e Ossos/anatomia & histologia , Osso e Ossos/fisiologia , Feminino , Peixes/classificação , Masculino , Músculos/fisiologia , Maturidade Sexual
9.
J Morphol ; 274(4): 377-94, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23139076

RESUMO

Sound production that is mediated by intrinsic or extrinsic swim bladder musculature has evolved multiple times in teleost fishes. Sonic muscles must contract rapidly and synchronously to compress the gas-filled bladder with sufficient velocity to produce sound. Muscle modifications that may promote rapid contraction include small fiber diameter, elaborate sarcoplasmic reticulum (SR), triads at the A-I boundary, and cores of sarcoplasm. The diversity of innervation patterns indicate that sonic muscles have independently evolved from different trunk muscle precursors. The analysis of sonic motor pathways in distantly related fishes is required to determine the relationships between sonic muscle evolution and function in acoustic signaling. We examined the ultrastructure of sonic and adjacent hypaxial muscle fibers and the distribution of sonic motor neurons in the coral reef Pyramid Butterflyfish (Chaetodontidae: Hemitaurichthys polylepis) that produces sound by contraction of extrinsic sonic muscles near the anterior swim bladder. Relative to adjacent hypaxial fibers, sonic muscle fibers were sparsely arranged among the endomysium, smaller in cross-section, had longer sarcomeres, a more elaborate SR, wider t-tubules, and more radially arranged myofibrils. Both sonic and non-sonic muscle fibers possessed triads at the Z-line, lacked sarcoplasmic cores, and had mitochondria among the myofibrils and concentrated within the peripheral sarcoplasm. Sonic muscles of this derived eutelost possess features convergent with other distant vocal taxa (other euteleosts and non-euteleosts): small fiber diameter, a well-developed SR, and radial myofibrils. In contrast with some sonic fishes, however, Pyramid Butterflyfish sonic muscles lack sarcoplasmic cores and A-I triads. Retrograde nerve label experiments show that sonic muscle is innervated by central and ventrolateral motor neurons associated with spinal nerves 1-3. This restricted distribution of sonic motor neurons in the spinal cord differs from many euteleosts and likely reflects the embryological origin of sonic muscles from hypaxial trunk precursors rather than occipital somites.


Assuntos
Neurônios Motores/ultraestrutura , Músculo Esquelético/inervação , Músculo Esquelético/ultraestrutura , Perciformes/fisiologia , Vocalização Animal , Sacos Aéreos/inervação , Sacos Aéreos/ultraestrutura , Animais , Recifes de Corais , Vias Eferentes/ultraestrutura , Fibras Musculares Esqueléticas/ultraestrutura , Perciformes/anatomia & histologia , Sarcômeros/ultraestrutura , Nervos Espinhais/ultraestrutura
10.
Front Zool ; 9(1): 34, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23217241

RESUMO

BACKGROUND: Many Ophidiidae are active in dark environments and display complex sonic apparatus morphologies. However, sound recordings are scarce and little is known about acoustic communication in this family. This paper focuses on Ophidion rochei which is known to display an important sexual dimorphism in swimbladder and anterior skeleton. The aims of this study were to compare the sound producing morphology, and the resulting sounds in juveniles, females and males of O. rochei. RESULTS: Males, females, and juveniles possessed different morphotypes. Females and juveniles contrasted with males because they possessed dramatic differences in morphology of their sonic muscles, swimbladder, supraoccipital crest, and first vertebrae and associated ribs. Further, they lacked the 'rocker bone' typically found in males. Sounds from each morphotype were highly divergent. Males generally produced non harmonic, multiple-pulsed sounds that lasted for several seconds (3.5 ± 1.3 s) with a pulse period of ca. 100 ms. Juvenile and female sounds were recorded for the first time in ophidiids. Female sounds were harmonic, had shorter pulse period (±3.7 ms), and never exceeded a few dozen milliseconds (18 ± 11 ms). Moreover, unlike male sounds, female sounds did not have alternating long and short pulse periods. Juvenile sounds were weaker but appear to be similar to female sounds. CONCLUSIONS: Although it is not possible to distinguish externally male from female in O. rochei, they show a sonic apparatus and sounds that are dramatically different. This difference is likely due to their nocturnal habits that may have favored the evolution of internal secondary sexual characters that help to distinguish males from females and that could facilitate mate choice by females. Moreover, the comparison of different morphotypes in this study shows that these morphological differences result from a peramorphosis that takes place during the development of the gonads.

11.
J Exp Biol ; 214(Pt 22): 3829-42, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22031748

RESUMO

Many teleost fishes produce sounds for social communication with mechanisms that do not involve swim bladder musculature. Such sounds may reflect physical attributes of the sound-production mechanism, be constrained by body size and therefore control signal reliability during agonistic behaviors. We examined kinematics of the cranium, median fins and caudal peduncle during sound production in two territorial chaetodontid butterflyfish sister species: forcepsfish (Forcipiger flavissimus) and longnose butterflyfish (F. longirostris). During intraspecific agonistic encounters, both species emit a single pulse sound that precedes rapid cranial rotation at velocities and accelerations that exceed those of prey strikes by many ram- and suction-feeding fishes. Electromyography showed that onsets of activity for anterior epaxialis, sternohyoideus, A1 and A2 adductor mandibulae muscles and sound emission are coincident but precede cranial elevation. Observations indicate that sound production is driven by epaxial muscle contraction whereas a ventral linkage between the head and pectoral girdle is maintained by simultaneous activity from the adductor mandibulae and sternohyoideus. Thus, the girdle, ribs and rostral swim bladder are pulled anteriorly before the head is released and rotated dorsally. Predictions of the hypothesis that acoustic signals are indicators of body size and kinematic performance were confirmed. Variation in forcepsfish sound duration and sound pressure level is explained partly by cranial elevation velocity and epaxial electromyogram duration. Body size, however, explains most variation in duration and sound pressure level. These observed associations indicate that forcepsfish sounds may be accurate indicators of size and condition that are related to resource holding potential during social encounters.


Assuntos
Perciformes/fisiologia , Som , Comunicação Animal , Animais , Fenômenos Biomecânicos , Eletromiografia , Músculos/fisiologia , Crânio/fisiologia
12.
J Exp Biol ; 214(Pt 16): 2702-8, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21795566

RESUMO

The diversity in calls and sonic mechanisms appears to be important in Chaetodontidae. Calls in Chaetodon multicinctus seem to include tail slap, jump, pelvic fin flick and dorsal-anal fin erection behaviors. Pulsatile sounds are associated with dorsal elevation of the head, anterior extension of the ventral pectoral girdle and dorsal elevation of the caudal skeleton in Forcipiger flavissiumus. In Hemitaurichthys polylepis, extrinsic swimbladder muscles could be involved in sounds originating from the swimbladder and correspond to the inward buckling of tissues situated dorsally in front of the swimbladder. These examples suggest that this mode of communication could be present in other members of the family. Sounds made by the pennant bannerfish (Heniochus chrysostomus) were recorded for the first time on coral reefs and when fish were hand held. In hand-held fishes, three types of calls were recorded: isolated pulses (51%), trains of four to 11 pulses (19%) and trains preceded by an isolated pulse (29%). Call frequencies were harmonic and had a fundamental frequency between 130 and 180 Hz. The fundamental frequency, sound amplitude and sound duration were not related to fish size. Data from morphology, sound analysis and electromyography recordings highlight that the calls are made by extrinsic sonic drumming muscles in association with the articulated bones of the ribcage. The pennant bannerfish system differs from other Chaetodontidae in terms of sound characteristics, associated body movements and, consequently, mechanism.


Assuntos
Comunicação Animal , Perciformes/fisiologia , Som , Estimulação Acústica , Animais , Tamanho Corporal , Eletromiografia , Músculos/fisiologia , Oscilometria , Perciformes/anatomia & histologia , Crânio/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Gravação em Vídeo
13.
J Exp Biol ; 213(Pt 22): 3881-93, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21037068

RESUMO

Acoustic behaviors are widespread among diverse fish taxa but mechanisms of sound production are known from relatively few species, vary widely and convergent mechanisms are poorly known. We examined the sound production mechanism in the pyramid butterflyfish, Hemitaurichthys polylepis, a member of the socially and ecologically diverse reef fish family Chaetodontidae. In the field, fish produce pulse trains at dusk during social interactions that are probably related to mate attraction and courtship. In laboratory experiments, sound production was synchronized to high-speed video to determine body movement associated with sound generation. In addition, electromyography (EMG) recordings tested the activity of six candidate muscles. Fish produced individual pulses with a mean peak frequency of 97 Hz in rapid succession. EMG experiments show that anterior hypaxial muscles contract at high bilaterally synchronous rates (up to 120 Hz) in near perfect association with rapid inward buckling visible outside the body over the anterior swim bladder. Muscle activity often showed EMG doublets that occurred within the time of a single sound pulse but was not sustained. Buckling and sound pulse rates correlated strongly (R(2)≈1.00) and sound pulse rate measured over two successive pulses (maximum of 38 pulses s(-1)) was lower than muscle firing rate. These results show that the extrinsic swim bladder muscles of pyramid butterflyfish involve single contractions that produce pulses in a manner similar to distantly related teleosts, but involve a novel doublet motor-neuron firing pattern. Thus, the sound production mechanism in pyramid butterflyfish is likely convergent with several percomorph taxa and divergent from the related chaetodontid genus Forcipiger.


Assuntos
Sacos Aéreos/fisiologia , Perciformes/fisiologia , Acústica , Sacos Aéreos/anatomia & histologia , Comunicação Animal , Animais , Eletromiografia , Feminino , Masculino , Músculos/anatomia & histologia , Músculos/fisiologia , Perciformes/anatomia & histologia
14.
J Exp Biol ; 210(Pt 22): 3990-4004, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17981867

RESUMO

Sounds provide important signals for inter- and intraspecific communication in fishes, but few studies examine fish acoustic behavior in the context of coevolution of sound production and hearing ability within a species. This study characterizes the acoustic behavior in a reproductive population of the Hawaiian sergeant fish, Abudefduf abdominalis, and compares acoustic features to hearing ability, measured by the auditory evoked potential (AEP) technique. Sergeant fish produce sounds at close distances to the intended receiver (

Assuntos
Acústica , Audição/fisiologia , Perciformes/fisiologia , Som , Agressão , Comunicação Animal , Animais , Limiar Auditivo , Encéfalo/anatomia & histologia , Corte , Orelha Interna/anatomia & histologia , Potenciais Evocados Auditivos , Feminino , Havaí , Comportamento de Nidação , Pressão , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...