Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 760, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472542

RESUMO

Utilization of active colloids to transport both biological and inorganic cargo has been widely examined in the context of applications ranging from targeted drug delivery to sample analysis. In general, carriers are customized to load one specific target via a mechanism distinct from that driving the transport. Here we unify these tasks and extend loading capabilities to include on-demand selection of multiple nano/micro-sized targets without the need for pre-labelling or surface functionalization. An externally applied electric field is singularly used to drive the active cargo carrier and transform it into a mobile floating electrode that can attract (trap) or repel specific targets from its surface by dielectrophoresis, enabling dynamic control of target selection, loading and rate of transport via the electric field parameters. In the future, dynamic selectivity could be combined with directed motion to develop building blocks for bottom-up fabrication in applications such as additive manufacturing and soft robotics.

2.
Electrophoresis ; 33(5): 870-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22522542

RESUMO

We derive the equations governing the dipolophoretic motion of an electrically inhomogeneous Janus particle composed of two hemispheres with differing permittivities. The general formulation is valid for any electric forcing, including alternating current (AC) and makes no assumptions regarding the size of the electric double layer (EDL). The solution is thus valid even for nanoparticles where the particle radius can be of the same order as the EDL thickness. Semi-analytic and numerical solutions for the linear phoretic velocity and angular rotation of a single Janus particle suspended in an infinite medium are given in the limit of uniform direct current (DC) electric forcing. It is determined that particle mobility is a function of the permittivity in each hemisphere and the contrast between them as well as the EDL length. For a particle in which both hemispheres are characterized by a finite permittivity, we discover that maximum mobility and rotation is not obtained in the Helmholtz-Smoluchowski thin EDL limit but is rather a function of the permittivity and EDL properties.


Assuntos
Coloides/química , Campos Eletromagnéticos , Eletroforese/métodos , Nanopartículas/química , Simulação por Computador , Hidrodinâmica , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...