Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Neurosci ; 26(6): 1021-1031, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37188873

RESUMO

Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in AppNL-G-F mice, but that this mechanism fails in older mice. Spatial transcriptomics analysis identifies Pmch as part of the adaptive response in AppNL-G-F mice. Pmch encodes melanin-concentrating hormone (MCH), which is produced in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH downregulates synaptic transmission, modulates firing rate homeostasis in hippocampal neurons and reverses the increased excitatory drive to CA1 neurons in AppNL-G-F mice. AppNL-G-F mice spend less time in rapid eye movement (REM) sleep. AppNL-G-F mice and individuals with AD show progressive changes in morphology of CA1-projecting MCH axons. Our findings identify the MCH system as vulnerable in early AD and suggest that impaired MCH-system function contributes to aberrant excitatory drive and sleep defects, which can compromise hippocampus-dependent functions.


Assuntos
Doença de Alzheimer , Hormônios Hipotalâmicos , Camundongos , Animais , Doença de Alzheimer/genética , Neurônios/fisiologia , Hormônios Hipofisários , Sono , Camundongos Transgênicos
3.
Eur J Neurosci ; 57(1): 106-128, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36310348

RESUMO

The interplay between the medial prefrontal cortex and hippocampus during non-rapid eye movement (NREM) sleep contributes to the consolidation of contextual memories. To assess the role of the thalamic nucleus reuniens (Nre) in this interaction, we investigated the coupling of neuro-oscillatory activities among prelimbic cortex, Nre, and hippocampus across sleep states and their role in the consolidation of contextual memories using multi-site electrophysiological recordings and optogenetic manipulations. We showed that ripples are time-locked to the Up state of cortical slow waves, the transition from UP to DOWN state in thalamic slow waves, the troughs of cortical spindles, and the peaks of thalamic spindles during spontaneous sleep, rebound sleep and sleep following a fear conditioning task. In addition, spiking activity in Nre increased before hippocampal ripples, and the phase-locking of hippocampal ripples and thalamic spindles during NREM sleep was stronger after acquisition of a fear memory. We showed that optogenetic inhibition of Nre neurons reduced phase-locking of ripples to cortical slow waves in the ventral hippocampus whilst their activation altered the preferred phase of ripples to slow waves in ventral and dorsal hippocampi. However, none of these optogenetic manipulations of Nre during sleep after acquisition of fear conditioning did alter sleep-dependent memory consolidation. Collectively, these results showed that Nre is central in modulating hippocampus and cortical rhythms during NREM sleep.


Assuntos
Córtex Cerebral , Núcleos da Linha Média do Tálamo , Núcleos da Linha Média do Tálamo/fisiologia , Hipocampo/fisiologia , Sono/fisiologia , Cognição , Eletroencefalografia/métodos
4.
Mol Psychiatry ; 27(11): 4394-4406, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35902628

RESUMO

Schizophrenia is associated with alterations of sensory integration, cognitive processing and both sleep architecture and sleep oscillations in mouse models and human subjects, possibly through changes in thalamocortical dynamics. Oxidative stress (OxS) damage, including inflammation and the impairment of fast-spiking gamma-aminobutyric acid neurons have been hypothesized as a potential mechanism responsible for the onset and development of schizophrenia. Yet, the link between OxS and perturbation of thalamocortical dynamics and sleep remains unclear. Here, we sought to investigate the effects of OxS on sleep regulation by characterizing the dynamics of thalamocortical networks across sleep-wake states in a mouse model with a genetic deletion of the modifier subunit of glutamate-cysteine ligase (Gclm knockout, KO) using high-density electrophysiology in freely-moving mice. We found that Gcml KO mice exhibited a fragmented sleep architecture and impaired sleep homeostasis responses as revealed by the increased NREM sleep latencies, decreased slow-wave activities and spindle rate after sleep deprivation. These changes were associated with altered bursting activity and firing dynamics of neurons from the thalamic reticularis nucleus, anterior cingulate and anterodorsal thalamus. Administration of N-acetylcysteine (NAC), a clinically relevant antioxidant, rescued the sleep fragmentation and spindle rate through a renormalization of local neuronal dynamics in Gclm KO mice. Collectively, these findings provide novel evidence for a link between OxS and the deficits of frontal TC network dynamics as a possible mechanism underlying sleep abnormalities and impaired homeostatic responses observed in schizophrenia.


Assuntos
Glutamato-Cisteína Ligase , Sono , Camundongos , Humanos , Animais , Sono/fisiologia , Tálamo , Núcleos Talâmicos , Estresse Oxidativo , Córtex Cerebral
5.
Proc Natl Acad Sci U S A ; 119(17): e2112225119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35452310

RESUMO

Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep­wake regulation.


Assuntos
MicroRNAs , Neuropeptídeos , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , MicroRNAs/genética , Neuropeptídeos/metabolismo , Orexinas/genética , Orexinas/metabolismo , Sono/genética , Vigília/genética , Peixe-Zebra/metabolismo
6.
Invest Ophthalmol Vis Sci ; 60(4): 954-964, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30882851

RESUMO

Purpose: To use our intra-arterial chemotherapy (IAC) rabbit model to assess the impact of IAC procedure, drug, dose, and choice of technique on ocular structure and function, to study the nature and etiology of IAC toxicity, and to compare to observations in patients. Methods: Rabbits received IAC melphalan (0.4-0.8 mg/kg), carboplatin (25-50 mg), or saline, either by direct ophthalmic artery cannulation, or with a technique emulating nonocclusion. Ocular structure/function were assessed with examination, electroretinography (ERG), fundus photography, fluorescein angiography, optical coherence tomography (OCT), and OCT angiography, prior to and 5 to 6 weeks after IAC. Blood counts were obtained weekly. We reviewed our last 50 IAC treatments in patients for evidence of ocular or systemic complications. Results: No toxicity was seen in the saline control group. With standard (0.4 mg/kg) melphalan, no vascular/microvascular abnormalities were seen with either technique. However, severe microvascular pruning and arteriolar occlusions were seen occasionally at 0.8 mg/kg doses. ERG reductions were dose-dependent. Histology showed melphalan dose-dependent degeneration in all retinal layers, restricted geographically to areas of greatest vascular density. Carboplatin caused massive edema of ocular/periocular structures. IAC patients experienced occasional periocular swelling/rash, and only rarely experienced retinopathy or vascular events/hemorrhage in eyes treated multiple times with triple (melphalan/carboplatin/topotecan) therapy. Transient neutropenia occurred after 46% of IAC procedures, generally after triple therapy. Conclusions: IAC toxicity appears to be related to the specific drug being used and is dose-dependent, rather than related to the IAC procedure itself or the specific technique selected. These rabbit findings are corroborated by our clinical findings in patients.


Assuntos
Antineoplásicos Alquilantes/toxicidade , Antineoplásicos/toxicidade , Carboplatina/toxicidade , Infusões Intra-Arteriais/métodos , Melfalan/toxicidade , Doenças Retinianas/induzido quimicamente , Vasos Retinianos/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos Alquilantes/administração & dosagem , Carboplatina/administração & dosagem , Relação Dose-Resposta a Droga , Eletrorretinografia , Feminino , Angiofluoresceinografia , Humanos , Lactente , Masculino , Melfalan/administração & dosagem , Modelos Animais , Artéria Oftálmica/efeitos dos fármacos , Coelhos , Retina/fisiopatologia , Doenças Retinianas/fisiopatologia , Neoplasias da Retina/tratamento farmacológico , Vasos Retinianos/fisiopatologia , Retinoblastoma/tratamento farmacológico , Estudos Retrospectivos , Tomografia de Coerência Óptica
7.
Biomed Opt Express ; 9(3): 1244-1255, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29541517

RESUMO

The zebrafish is a robust model for studying human ophthalmic function and disease because of its fecundity, life-cycle, and similarities between its retinal structure and the human retina. Here, we demonstrate longitudinal in vivo imaging of retinal structure using optical coherence tomography (OCT) and noninvasive retinal vascular perfusion imaging using OCT angiography (OCT-A) in zebrafish. In addition, we present methods for retinal vascular segmentation and biometry to quantify vessel branch length, curvature, and angle. We further motivate retinal vascular biometry as a novel method for noninvasive zebrafish identification and demonstrated 99.9% accuracy for uniquely identifying eyes from a set of 200 longitudinal OCT/OCT-A volumes. The described methods enable the quantitative analysis of the vascular changes in zebrafish models of ophthalmic diseases and may broadly benefit large-scale zebrafish studies.

8.
J Biophotonics ; 11(4): e201700268, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29149542

RESUMO

Non-invasive biological imaging is crucial for understanding in vivo structure and function. Optical coherence tomography (OCT) and reflectance confocal microscopy are two of the most widely used optical modalities for exogenous contrast-free, high-resolution, three-dimensional imaging in non-fluorescent scattering tissues. However, sample motion remains a critical barrier to raster-scanned acquisition and reconstruction of wide-field anatomically accurate volumetric datasets. We introduce spectrally encoded coherence tomography and reflectometry (SECTR), a high-speed, multimodality system for simultaneous OCT and spectrally encoded reflectance (SER) imaging. SECTR utilizes a robust system design consisting of shared optical relays, scanning mirrors, swept laser and digitizer to achieve the fastest reported in vivo multimodal imaging rate of 2 gigapixels per second. Our optical design and acquisition scheme enable spatiotemporally co-registered acquisition of OCT cross-sections simultaneously with en face SER images for multivolumetric mosaicking. Complementary axial and lateral translation and rotation are extracted from OCT and SER data, respectively, for full volumetric estimation of sample motion with micron spatial and millisecond temporal resolution.


Assuntos
Tomografia de Coerência Óptica/métodos , Voluntários Saudáveis , Humanos , Imageamento Tridimensional , Fenômenos Ópticos , Retina/diagnóstico por imagem , Fatores de Tempo
9.
Biomed Opt Express ; 8(1): 193-206, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28101411

RESUMO

Scanning laser ophthalmoscopy (SLO) benefits diagnostic imaging and therapeutic guidance by allowing for high-speed en face imaging of retinal structures. When combined with optical coherence tomography (OCT), SLO enables real-time aiming and retinal tracking and provides complementary information for post-acquisition volumetric co-registration, bulk motion compensation, and averaging. However, multimodality SLO-OCT systems generally require dedicated light sources, scanners, relay optics, detectors, and additional digitization and synchronization electronics, which increase system complexity. Here, we present a multimodal ophthalmic imaging system using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) for in vivo human retinal imaging. SESLO reduces the complexity of en face imaging systems by multiplexing spatial positions as a function of wavelength. SESLO image quality benefited from single-mode illumination and multimode collection through a prototype double-clad fiber coupler, which optimized scattered light throughput and reduce speckle contrast while maintaining lateral resolution. Using a shared 1060 nm swept-source, shared scanner and imaging optics, and a shared dual-channel high-speed digitizer, we acquired inherently co-registered en face retinal images and OCT cross-sections simultaneously at 200 frames-per-second.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...