Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871940

RESUMO

Material functionality can be strongly determined by structure extending only over nanoscale distances. The pair distribution function presents an opportunity for structural studies beyond idealized crystal models and to investigate structure over varying length scales. Applying this method with ultrafast time resolution has the potential to similarly disrupt the study of structural dynamics and phase transitions. Here we demonstrate such a measurement of CuIr2S4 optically pumped from its low-temperature Ir-dimerized phase. Dimers are optically suppressed without spatial correlation, generating a structure whose level of disorder strongly depends on the length scale. The redevelopment of structural ordering over tens of picoseconds is directly tracked over both space and time as a transient state is approached. This measurement demonstrates the crucial role of local structure and disorder in non-equilibrium processes as well as the feasibility of accessing this information with state-of-the-art XFEL facilities.

2.
IUCrJ ; 10(Pt 6): 656-661, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903100

RESUMO

X-ray structural science is undergoing a revolution driven by the emergence of X-ray Free-electron Laser (XFEL) facilities. The structures of crystalline solids can now be studied on the picosecond time scale relevant to phonons, atomic vibrations which travel at acoustic velocities. In the work presented here, X-ray diffuse scattering is employed to characterize the time dependence of the liquid phase emerging from femtosecond laser-induced melting of polycrystalline gold thin films using an XFEL. In a previous analysis of Bragg peak profiles, we showed the supersonic disappearance of the solid phase and presented a model of pumped hot electrons carrying energy from the gold surface to scatter at internal grain boundaries. This generates melt fronts propagating relatively slowly into the crystal grains. By conversion of diffuse scattering to a partial X-ray pair distribution function, we demonstrate that it has the characteristic shape obtained by Fourier transformation of the measured F(Q). The diffuse signal fraction increases with a characteristic rise-time of 13 ps, roughly independent of the incident pump fluence and consequent final liquid fraction. This suggests the role of further melt-front nucleation processes beyond grain boundaries.

3.
Acta Crystallogr A Found Adv ; 79(Pt 5): 412-426, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37490406

RESUMO

The local structural characterization of iron oxide nanoparticles is explored using a total scattering analysis method known as pair distribution function (PDF) (also known as reduced density function) analysis. The PDF profiles are derived from background-corrected powder electron diffraction patterns (the e-PDF technique). Due to the strong Coulombic interaction between the electron beam and the sample, electron diffraction generally leads to multiple scattering, causing redistribution of intensities towards higher scattering angles and an increased background in the diffraction profile. In addition to this, the electron-specimen interaction gives rise to an undesirable inelastic scattering signal that contributes primarily to the background. The present work demonstrates the efficacy of a pre-treatment of the underlying complex background function, which is a combination of both incoherent multiple and inelastic scatterings that cannot be identical for different electron beam energies. Therefore, two different background subtraction approaches are proposed for the electron diffraction patterns acquired at 80 kV and 300 kV beam energies. From the least-square refinement (small-box modelling), both approaches are found to be very promising, leading to a successful implementation of the e-PDF technique to study the local structure of the considered nanomaterial.

4.
Acta Crystallogr A Found Adv ; 78(Pt 6): 515, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318075

RESUMO

The name of the third author of the article by Koch et al. [Acta Cryst. (2021). A77, 611-636] is corrected.

5.
Inorg Chem ; 61(32): 12797-12808, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35913893

RESUMO

Two-dimensional iron chalcogenide intercalates display a remarkable correlation of the interlayer spacing with enhancement of the superconducting critical temperature (Tc). In this work, synchrotron X-ray absorption (XAS; at the Fe and Se K-edges) and emission (XES; at the Fe Κß) spectroscopies allow one to discuss how the important rise of Tc (∼44 K) in the molecule-intercalated Lix(C5H5N)yFe2-zSe2 relates to the electronic and local structural changes felt by the inorganic host upon doping (x). XES shows that widely separated layers of edge-sharing FeSe4 tetrahedra carry low-spin moieties, with a local Fe magnetic moment slightly reduced compared to the parent ß-Fe2-zSe2. Pre-edge XAS expresses the progressively reduced mixing of metal 3d-4p states upon lithiation. Doping-mediated local lattice modifications, probed by conventional Tc optimization measures (cf. the anion height and FeSe4 tetrahedra regularity), become less relevant when layers are spaced far away. On the basis of extended X-ray absorption fine structure, such distortions are compensated by a softer Fe network that relates to Fe-site vacancies, alleviating electron-lattice correlations and superconductivity. Density functional theory (DFT) guided modification of the isolated Fe2-zSe2 (z, vacant sites) planes, resembling the host layers, identify that Fe-site deficiency occurs at low energy cost, giving rise to stretched Fe sheets, in accordance with experiments. The robust high-Tc in Lix(C5H5N)yFe2-zSe2, arises from the interplay of electron-donating spacers and the iron selenide layer's tolerance to defect chemistry, a tool to favorably tune its Fermi surface properties.

6.
Adv Mater ; 34(24): e2202255, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35412675

RESUMO

Typically, conventional structure transitions occur from a low symmetry state to a higher symmetry state upon warming. In this work, an unexpected local symmetry breaking in the tetragonal diamondoid compound AgGaTe2 is reported, which, upon warming, evolves continuously from an undistorted ground state to a locally distorted state while retaining average crystallographic symmetry. This is a rare phenomenon previously referred to as emphanisis. This distorted state, caused by the weak sd3 orbital hybridization of tetrahedral Ag atoms, causes their displacement off the tetrahedron center and promotes a global distortion of the crystal structure resulting in strong acoustic-optical phonon scattering and an ultralow lattice thermal conductivity of 0.26 W m-1 K-1 at 850 K in AgGaTe2 . The findings explain the underlying reason for the unexpectedly low thermal conductivities of silver-based compounds compared to copper-based analogs and provide a guideline to suppressing heat transport in diamondoid and other materials.

7.
Inorg Chem ; 61(10): 4350-4360, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35212536

RESUMO

A time-resolved synchrotron X-ray total scattering study sheds light on the evolution of the different structural length scales involved during the intercalation of the layered iron-selenide host by organic molecular donors, aiming at the formation of the expanded-lattice Lix(C5H5N)yFe2-zSe2 hybrid superconductor. The intercalates are found to crystallize in the tetragonal ThCr2Si2-type structure at the average level, however, with an enhanced interlayer iron-selenide spacing (d = 16.2 Å) that accommodates the heterocyclic molecular spacers. Quantitative atomic pair distribution function (PDF) analysis at variable times suggests distorted FeSe4 tetrahedral local environments that appear swollen with respect to those in the parent ß-FeSe. Simultaneously acquired in situ synchrotron X-ray powder diffraction data disclose that secondary phases (α-Fe and Li2Se) grow significantly when a higher lithium concentration is used in the solvothermal reaction or when the solution is aged. These observations are in line with the strongly reducing character of the intercalation medium's solvated electrons that mediate the defect chemistry of the expanded-lattice superconductor. In the latter, intralayer correlated local distortions indicate electron-donating aspects that reflect in somewhat enlarged Fe-Se bonds. They also reveal a degree of relief of chemical pressure associated with a large distance between Fe and Se sheets ("taller" anion height) and a stretched Fe-Fe square planar topology. The elongation of the latter, derived from the in situ PDF study, speaks for a plausible increase in the Fe-site vacancy concentration. The evolution of the local structural parameters suggests an optimum reaction window where kinetically stabilized phases resemble the distortions of the edge-sharing Fe-Se tetrahedra, required for a high-Tc in expanded-lattice iron-chalcogenides.

8.
Nanoscale ; 14(2): 382-401, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34935014

RESUMO

The effects of cobalt incorporation in spherical heterostructured iron oxide nanocrystals (NCs) of sub-critical size have been explored by colloidal chemistry methods. Synchrotron X-ray total scattering methods suggest that cobalt (Co) substitution in rock salt iron oxide NCs tends to remedy their vacant iron sites, offering a higher degree of resistance to oxidative conversion. Self-passivation still creates a spinel-like shell, but with a higher volume fraction of the rock salt Co-containing phase in the core. The higher divalent metal stoichiometry in the rock salt phase, with increasing Co content, results in a population of unoccupied tetrahedral metal sites in the spinel part, likely through oxidative shell creation, involving an ordered defect-clustering mechanism, directly correlated to core stabilization. To shed light on the effects of Co-substitution and atomic-scale defects (vacant sites), Monte Carlo simulations suggest that the designed NCs, with desirable, enhanced magnetic properties (cf. exchange bias and coercivity), are developed with magnetocrystalline anisotropy which increases due to a relatively low content of Co ions in the lattice. The growth of optimally performing candidates combines also a strongly exchange-coupled system, secured through a high volumetric ratio rock salt phase, interfaced by a not so defective spinel shell. In view of these requirements, specific absorption rate (SAR) calculations demonstrate that the rock salt core sufficiently protected from oxidation and the heterostructure preserved over time, play a key role in magnetically mediated heating efficacies, for potential use of such NCs in magnetic hyperthermia applications.

9.
Acta Crystallogr A Found Adv ; 77(Pt 6): 611-636, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726636

RESUMO

Data reduction and correction steps and processed data reproducibility in the emerging single-crystal total-scattering-based technique of three-dimensional differential atomic pair distribution function (3D-ΔPDF) analysis are explored. All steps from sample measurement to data processing are outlined using a crystal of CuIr2S4 as an example, studied in a setup equipped with a high-energy X-ray beam and a flat-panel area detector. Computational overhead as pertains to data sampling and the associated data-processing steps is also discussed. Various aspects of the final 3D-ΔPDF reproducibility are explicitly tested by varying the data-processing order and included steps, and by carrying out a crystal-to-crystal data comparison. Situations in which the 3D-ΔPDF is robust are identified, and caution against a few particular cases which can lead to inconsistent 3D-ΔPDFs is noted. Although not all the approaches applied herein will be valid across all systems, and a more in-depth analysis of some of the effects of the data-processing steps may still needed, the methods collected herein represent the start of a more systematic discussion about data processing and corrections in this field.

10.
Sci Adv ; 6(3): eaax2445, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010766

RESUMO

Melting is a fundamental process of matter that is still not fully understood at the microscopic level. Here, we use time-resolved x-ray diffraction to examine the ultrafast melting of polycrystalline gold thin films using an optical laser pump followed by a delayed hard x-ray probe pulse. We observe the formation of an intermediate new diffraction peak, which we attribute to material trapped between the solid and melted states, that forms 50 ps after laser excitation and persists beyond 500 ps. The peak width grows rapidly for 50 ps and then narrows distinctly at longer time scales. We attribute this to a melting band originating from the grain boundaries and propagating into the grains. Our observation of this intermediate state has implications for the use of ultrafast lasers for ablation during pulsed laser deposition.

11.
Mater Sci Eng C Mater Biol Appl ; 75: 157-164, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415449

RESUMO

Magnetic nanoparticles (MNPs) are of immense interest for diagnostic and therapeutic applications in medicine. Design and development of new iron oxide-based MNPs for such applications is of rather limited breadth without reliable and sensitive methods to determine their levels in body tissues. Commonly used methods, such as ICP, are quite problematic, due to the inability to decipher the origin of the detected iron, i.e. whether it originates from the MNPs or endogenous from tissues and bodily fluids. One of the approaches to overcome this problem and to increase reliability of tracing MNPs is to partially substitute iron ions in the MNPs with Er. Here, we report on the development of citric acid coated (Fe,Er)3O4 nanoparticles and characterization of their physico-chemical and biological properties by utilization of various complementary approaches. The synthesized MNPs had a narrow (6-7nm) size distribution, as consistently seen in atomic pair distribution function, transmission electron microscopy, and DC magnetization measurements. The particles were found to be superparamagnetic, with a pronounced maximum in measured zero-field cooled magnetization at around 90K. Reduction in saturation magnetization due to incorporation of 1.7% Er3+ into the Fe3O4 matrix was clearly observed. From the biological standpoint, citric acid coated (Fe,Er)3O4 NPs were found to induce low toxicity both in human cell fibroblasts and in zebrafish (Danio rerio) embryos. Biodistribution pattern of the MNPs after intravenous administration in healthy Wistar rats was followed by the radiotracer method, revealing that 90Y-labeled MNPs were predominantly found in liver (75.33% ID), followed by lungs (16.70% ID) and spleen (2.83% ID). Quantitative agreement with these observations was obtained by ICP-MS elemental analysis using Er as the detected tracer. Based on the favorable physical, chemical and biological characteristics, citric acid coated (Fe,Er)3O4 MNPs could be further considered for the potential application as a diagnostic and/or therapeutic agent. This work also demonstrates that combined application of these techniques is a promising tool for studies of pharmacokinetics of the new MNPs in complex biological systems.


Assuntos
Ácido Cítrico , Materiais Revestidos Biocompatíveis , Európio , Compostos Férricos , Fibroblastos/metabolismo , Teste de Materiais , Nanopartículas/química , Radioisótopos de Ítrio , Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Ácido Cítrico/química , Ácido Cítrico/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Európio/química , Európio/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacologia , Fibroblastos/citologia , Humanos , Campos Magnéticos
12.
Nat Commun ; 5: 5761, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25482113

RESUMO

Understanding the role played by broken-symmetry states such as charge, spin and orbital orders in the mechanism of emergent properties, such as high-temperature superconductivity, is a major current topic in materials research. That the order may be within one unit cell, such as nematic, was only recently considered theoretically, but its observation in the iron-pnictide and doped cuprate superconductors places it at the forefront of current research. Here, we show that the recently discovered BaTi2Sb2O superconductor and its parent compound BaTi2As2O form a symmetry-breaking nematic ground state that can be naturally explained as an intra-unit-cell nematic charge order with d-wave symmetry, pointing to the ubiquity of the phenomenon. These findings, together with the key structural features in these materials being intermediate between the cuprate and iron-pnictide high-temperature superconducting materials, render the titanium oxypnictides an important new material system to understand the nature of nematic order and its relationship to superconductivity.

13.
J Phys Condens Matter ; 26(1): 015701, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24292376

RESUMO

We have synthesized K0.95(1)Ni1.86(2)Se2 single crystals. The single crystals contain K and Ni deficiencies not observed in KNi2Se2 polycrystals. Unlike KNi2Se2 polycrystals, the superconductivity is absent in single crystals. The detailed physical property study indicates that the K0.95Ni1.86Se2 single crystals exhibit heavy-fermion-like characteristics. The transition to a heavy fermion state below T ~ 30 K results in an enhancement of the electron-like carrier density whereas the magnetic susceptibility shows little anisotropy and suggests the presence of both itinerant and localized Ni orbitals.


Assuntos
Níquel/química , Compostos de Potássio/química , Selênio/química , Anisotropia , Cristalografia por Raios X , Condutividade Elétrica , Magnetismo , Modelos Moleculares
14.
Phys Rev Lett ; 111(9): 096404, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24033056

RESUMO

The temperature evolution of structural effects associated with charge order (CO) and spin order in La1.67Sr0.33NiO4 has been investigated using neutron powder diffraction. We report an anomalous shrinking of the c/a lattice parameter ratio that correlates with T(CO). The sign of this change can be explained by the change in interlayer Coulomb energy between the static-stripe-ordered state and the fluctuating-stripe-ordered state or the charge-disordered state. In addition, we identify a contribution to the mean-square displacements of Ni and in-plane O atoms whose width correlates quite well with the size of the pseudogap extracted from the reported optical conductivity, with a non-Debye-like component that persists below and well above T(CO). We infer that dynamic charge-stripe correlations survive to T∼2T(CO).

15.
Inorg Chem ; 52(18): 10685-9, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23987520

RESUMO

We have synthesized a new layered BiS2-based compound, SrFBiS2. This compound has a similar structure to LaOBiS2. It is built up by stacking up SrF layers and NaCl-type BiS2 layers alternatively along the c axis. Electric transport measurement indicates that SrFBiS2 is a semiconductor. Thermal transport measurement shows that SrFBiS2 has a small thermal conductivity and large Seebeck coefficient. First principle calculations are in agreement with experimental results and show that SrFBiS2 is very similar to LaOBiS2, which becomes a superconductor with F doping. Therefore, SrFBiS2 may be a parent compound of new superconductors.

16.
Phys Chem Chem Phys ; 15(22): 8480-6, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23525376

RESUMO

The atomic pair distribution function (PDF) analysis of X-ray powder diffraction data has been used to study the structure of small and ultra-small CdSe nanoparticles. A method is described that uses a wurtzite and zinc-blende mixed phase model to account for stacking faults in CdSe particles. The mixed-phase model successfully describes the structure of nanoparticles larger than 2 nm yielding a stacking fault density of about 30%. However, for ultrasmall nanoparticles smaller than 2 nm, the models cannot fit the experimental PDF showing that the structure is significantly modified from that of larger particles and the bulk. The observation of a significant change in the average structure at ultra-small size is likely to explain the unusual properties of the ultrasmall particles such as their white light emitting ability.


Assuntos
Compostos de Cádmio/química , Nanopartículas/química , Compostos de Selênio/química , Estrutura Molecular , Difração de Pó
17.
ACS Nano ; 7(2): 1542-57, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23273019

RESUMO

This study examines structural variations found in the atomic ordering of different transition metal nanoparticles synthesized via a common, kinetically controlled protocol: reduction of an aqueous solution of metal precursor salt(s) with NaBH4 at 273 K in the presence of a capping polymer ligand. These noble metal nanoparticles were characterized at the atomic scale using spherical aberration-corrected scanning transmission electron microscopy (C(s)-STEM). It was found for monometallic samples that the third row, face-centered-cubic (fcc), transition metal [(3M)-Ir, Pt, and Au] particles exhibited more coherently ordered geometries than their second row, fcc, transition metal [(2M)-Rh, Pd, and Ag] analogues. The former exhibit growth habits favoring crystalline phases with specific facet structures while the latter samples are dominated by more disordered atomic arrangements that include complex systems of facets and twinning. Atomic pair distribution function (PDF) measurements further confirmed these observations, establishing that the 3M clusters exhibit longer ranged ordering than their 2M counterparts. The assembly of intracolumn bimetallic nanoparticles (Au-Ag, Pt-Pd, and Ir-Rh) using the same experimental conditions showed a strong tendency for the 3M atoms to template long-ranged, crystalline growth of 2M metal atoms extending up to over 8 nm beyond the 3M core.

18.
J Phys Condens Matter ; 25(8): 086001, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23343510

RESUMO

The evolution of the magnetic state, crystal structure and microstructure parameters of nanocrystalline zinc-ferrite, tuned by thermal annealing of ∼4 nm nanoparticles, was systematically studied by complementary characterization methods. Structural analysis of neutron and synchrotron x-ray radiation data revealed a mixed cation distribution in the nanoparticle samples, with the degree of inversion systematically decreasing from 0.25 in an as-prepared nanocrystalline sample to a non-inverted spinel structure with a normal cation distribution in the bulk counterpart. The results of DC magnetization and Mössbauer spectroscopy experiments indicated a superparamagnetic relaxation in ∼4 nm nanoparticles, albeit with different freezing temperatures T(f) of 27.5 K and 46 K, respectively. The quadrupole splitting parameter decreases with the annealing temperature due to cation redistribution between the tetrahedral and octahedral sites of the spinel structure and the associated defects. DC magnetization measurements indicated the existence of significant interparticle interactions among nanoparticles ('superspins'). Additional confirmation for the presence of interparticle interactions was found from the fit of the T(f)(H) dependence to the AT line, from which a value of the anisotropy constant of K(eff) = 5.6 × 10(5) erg cm(-3) was deduced. Further evidence for strong interparticle interactions was found from AC susceptibility measurements, where the frequency dependence of the freezing temperature T(f)(f) was satisfactory described by both Vogel-Fulcher and dynamic scaling theory, both applicable for interacting systems. The parameters obtained from these fits suggest collective freezing of magnetic moments at T(f).


Assuntos
Compostos Férricos/química , Campos Magnéticos , Nanopartículas de Magnetita/química , Zinco/química , Tamanho da Partícula , Espectroscopia de Mossbauer , Temperatura , Difração de Raios X
19.
Sci Technol Adv Mater ; 13(5): 054305, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877518

RESUMO

Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties.

20.
Phys Rev Lett ; 107(13): 137002, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22026891

RESUMO

We report structurally tuned superconductivity in a K(x)Fe(2-y)Se(2-z)S(z) (0 ≤ z ≤ 2) phase diagram. Superconducting T(c) is suppressed as S is incorporated into the lattice, eventually vanishing at 80% of S. The magnetic and conductivity properties can be related to stoichiometry on a poorly occupied Fe1 site and the local environment of a nearly fully occupied Fe2 site. The decreasing T(c) coincides with the increasing Fe1 occupancy and the overall increase in Fe stoichiometry from z = 0 to z = 2. Our results indicate that the irregularity of the Fe2-Se/S tetrahedron is an important controlling parameter that can be used to tune the ground state in the new superconductor family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...