Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
J Leukoc Biol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087951

RESUMO

Lipid droplets (LD) are crucial for maintaining lipid and energy homeostasis within cells. LDs are highly dynamic organelles that present a phospholipid monolayer rich in neutral lipids. Additionally, LDs are associated with structural and non-structural proteins, rapidly mobilizing lipids for various biological processes. Lipids play a pivotal role during viral infection, participating during viral membrane fusion, viral replication, and assembly, endocytosis, and exocytosis. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection often induces LD accumulation, which is used as a source of energy for the replicative process. These findings suggest that LDs are a hallmark of viral infection, including SARS-CoV-2 infection. Moreover, LD participates in the inflammatory process and cell signaling, activating pathways related to innate immunity and cell death. Accumulating evidence demonstrates that LD induction by SARS-CoV-2 is a highly coordinated process, aiding replication and evading the immune system, and may contribute to the different cell death process observed in various studies. Nevertheless, recent research in the field of LDs suggests these organelles according to the pathogen and infection conditions may also play roles in immune and inflammatory responses, protecting the host against viral infection. Understanding how SARS-CoV-2 influences LD biogenesis is crucial for developing novel drugs or repurposing existing ones. By targeting host lipid metabolic pathways exploited by the virus, it is possible to impact viral replication and inflammatory responses. This review seeks to discuss and analyze the role of LDs during SARS-CoV-2 infection, specifically emphasizing their involvement in viral replication and the inflammatory response.

2.
PLoS Pathog ; 20(8): e1011812, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39173086

RESUMO

Identifying new molecular therapies targeted at the severe hepatic fibrosis associated with the granulomatous immune response to Schistosoma mansoni infection is essential to reduce fibrosis-related morbidity/mortality in schistosomiasis. In vitro cell activation studies suggested the lipid molecule prostaglandin D2 (PGD2) as a potential pro-fibrotic candidate in schistosomal context, although corroboratory in vivo evidence is still lacking. Here, to investigate the role of PGD2 and its cognate receptor DP2 in vivo, impairment of PGD2 synthesis by HQL-79 (an inhibitor of the H-PGD synthase) or DP2 receptor inhibition by CAY10471 (a selective DP2 antagonist) were used against the fibrotic response of hepatic eosinophilic granulomas of S. mansoni infection in mice. Although studies have postulated PGD2 as a fibrogenic molecule, HQL-79 and CAY10471 amplified, rather than attenuated, the fibrotic response within schistosome hepatic granulomas. Both pharmacological strategies increased hepatic deposition of collagen fibers - an unexpected outcome accompanied by further elevation of hepatic levels of the pro-fibrotic cytokines TGF-ß and IL-13 in infected animals. In contrast, infection-induced enhanced LTC4 synthesis in the schistosomal liver was reduced after HQL-79 and CAY10471 treatments, and therefore, inversely correlated with collagen production in granulomatous livers. Like PGD2-directed maneuvers, antagonism of cysteinyl leukotriene receptors CysLT1 by MK571 also promoted enhancement of TGF-ß and IL-13, indicating a key down-regulatory role for endogenous LTC4 in schistosomiasis-induced liver fibrosis. An ample body of data supports the role of S. mansoni-driven DP2-mediated activation of eosinophils as the source of LTC4 during infection, including: (i) HQL-79 and CAY10471 impaired systemic eosinophilia, drastically decreasing eosinophils within peritoneum and hepatic granulomas of infected animals in parallel to a reduction in cysteinyl leukotrienes levels; (ii) peritoneal eosinophils were identified as the only cells producing LTC4 in PGD2-mediated S. mansoni-induced infection; (iii) the magnitude of hepatic granulomatous eosinophilia positively correlates with S. mansoni-elicited hepatic content of cysteinyl leukotrienes, and (iv) isolated eosinophils from S. mansoni-induced hepatic granuloma synthesize LTC4 in vitro in a PGD2/DP2 dependent manner. So, our findings uncover that granulomatous stellate cells-derived PGD2 by activating DP2 receptors on eosinophils does stimulate production of anti-fibrogenic cysLTs, which endogenously down-regulates the hepatic fibrogenic process of S. mansoni granulomatous reaction - an in vivo protective function which demands caution in the future therapeutic attempts in targeting PGD2/DP2 in schistosomiasis.


Assuntos
Granuloma , Cirrose Hepática , Prostaglandina D2 , Receptores Imunológicos , Receptores de Prostaglandina , Schistosoma mansoni , Esquistossomose mansoni , Animais , Prostaglandina D2/metabolismo , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/patologia , Esquistossomose mansoni/parasitologia , Camundongos , Receptores de Prostaglandina/metabolismo , Cirrose Hepática/parasitologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Granuloma/parasitologia , Granuloma/metabolismo , Granuloma/patologia , Receptores Imunológicos/metabolismo , Fígado/parasitologia , Fígado/metabolismo , Fígado/patologia , Masculino , Feminino , Carbazóis , Piperidinas , Sulfonamidas
3.
Vaccine ; 42(25): 126175, 2024 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-39107160

RESUMO

INTRODUCTION: The Ad26.COV2·S (Janssen/Johnson & Johnson) COVID-19 vaccine, has been rarely associated with vaccine-induced immune thrombocytopenia and thrombosis (VITT). We investigated the prevalence of anti-PF4 antibody positivity, thrombocytopenia, D-dimer elevation, plasmatic thromboinflammatory markers, and platelet functional assays following Ad26.COV2·S vaccination in Rio de Janeiro, Brazil. METHODS: From July to September 2021, participants were assessed prior, 1, and 3 weeks post-vaccination. Platelet count and D-dimer were measured at each visit and anti-PF4 at week 3. A positive anti-PF4 prompted retrospective testing of the sample from week 0. Individuals with new thrombocytopenia or elevated D-dimer, positive anti-PF4, and 38 matched controls without laboratory abnormalities were evaluated for plasmatic p-selectin, tissue factor, and functional platelet activation assays. RESULTS: 630 individuals were included; 306 (48.57%) females, median age 28 years. Forty-two (6.67%) presented ≥1 laboratory abnormality in week 1 or 3. Five (0.79%) had thrombocytopenia, 31 (4.91%) elevated D-dimer, and 9 (1.57%) had positive anti-PF4 at week 3. Individuals with laboratory abnormalities and controls showed a slight increase in plasmatic p-selectin and tissue factor. Ten individuals with laboratory abnormalities yielded increased surface expression of p-selectin, and their ability to activate platelets in a FcγRIIa dependent manner was further evaluated. Two were partially inhibited by high concentrations of heparin and blockage of FcγRII with IV.3 antibody. Plasma obtained before vaccination produced similar results, suggesting a lack of association with vaccination. CONCLUSIONS: Vaccination with Ad26.COV2·S vaccine led to a very low frequency of low-titer positive anti-PF4 antibodies, elevation of D-dimer, and mild thrombocytopenia, with no associated clinically relevant increase in thromboinflammatory markers and platelet activation.


Assuntos
COVID-19 , Produtos de Degradação da Fibrina e do Fibrinogênio , Ativação Plaquetária , Fator Plaquetário 4 , Humanos , Feminino , Masculino , Brasil/epidemiologia , Adulto , Fator Plaquetário 4/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Pessoa de Meia-Idade , Trombocitopenia/induzido quimicamente , SARS-CoV-2/imunologia , Adulto Jovem , Ad26COVS1 , Contagem de Plaquetas , Vacinação , Estudos Retrospectivos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/efeitos adversos , Adolescente , Trombose/imunologia , Trombose/prevenção & controle
4.
Microbes Infect ; : 105400, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069117

RESUMO

Infection by SARS-CoV-2 is associated with uncontrolled inflammatory response during COVID-19 severe disease, in which monocytes are one of the main sources of pro-inflammatory mediators leading to acute respiratory distress syndrome. Extracellular vesicles (EVs) from different cells play important roles during SARS-CoV-2 infection, but investigations describing the involvement of EVs from primary human monocyte-derived macrophages (MDM) on the regulation of this infection are not available. Here, we describe the effects of EVs released by MDM stimulated with the neuropeptides VIP and PACAP on SARS-CoV-2-infected monocytes. MDM-derived EVs were isolated by differential centrifugation of medium collected from cells cultured for 24 h in serum-reduced conditions. Based on morphological properties, we distinguished two subpopulations of MDM-EVs, namely large (LEV) and small EVs (SEV). We found that MDM-derived EVs stimulated with the neuropeptides inhibited SARS-CoV-2 RNA synthesis/replication in monocytes, protected these cells from virus-induced cytopathic effects and reduced the production of pro-inflammatory mediators. In addition, EVs derived from VIP- and PACAP-treated MDM prevented the SARS-CoV-2-induced NF-κB activation. Overall, our findings suggest that MDM-EVs are endowed with immunoregulatory properties that might contribute to the antiviral and anti-inflammatory responses in SARS-CoV-2-infected monocytes and expand our knowledge of EV effects during COVID-19 pathogenesis.

5.
J Leukoc Biol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727078

RESUMO

Listeriosis, caused by Listeria monocytogenes (L.m.), poses a significant public health concern as one of the most severe foodborne diseases. The pathogenesis of L.m. involves critical steps such as phagosome rupture and escape upon internalization. Throughout infection, L.m. influences various host processes, including lipid metabolism pathways, yet the role of lipid droplets (LDs) remains unclear. Here, we reported a rapid, time-dependent increase in LD formation in macrophages induced by L.m. LD biogenesis was found to be dependent on L.m. viability and virulence genes, particularly on the activity of the pore-forming protein listeriolysin O (LLO). The prevention of LD formation by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) and cytosolic phospholipase A2 (cPLA2) significantly reduced intracellular bacterial survival, impaired prostaglandin E2 (PGE2) synthesis, and decreased IL-10 production. Additionally, inhibiting LD formation led to increased levels of TNF-α and IFN-ß. Collectively, our data suggest a role for LDs in promoting L.m. cell survival and evasion within macrophages.

6.
JHEP Rep ; 6(2): 100984, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38293685

RESUMO

Background & Aims: Lipid droplet (LD) accumulation in cells and tissues is understood to be an evolutionarily conserved tissue tolerance mechanism to prevent lipotoxicity caused by excess lipids; however, the presence of excess LDs has been associated with numerous diseases. Sepsis triggers the reprogramming of lipid metabolism and LD accumulation in cells and tissues, including the liver. The functions and consequences of sepsis-triggered liver LD accumulation are not well known. Methods: Experimental sepsis was induced by CLP (caecal ligation and puncture) in mice. Markers of hepatic steatosis, liver injury, hepatic oxidative stress, and inflammation were analysed using a combination of functional, imaging, lipidomic, protein expression and immune-enzymatic assays. To prevent LD formation, mice were treated orally with A922500, a pharmacological inhibitor of DGAT1. Results: We identified that liver LD overload correlates with liver injury and sepsis severity. Moreover, the progression of steatosis from 24 h to 48 h post-CLP occurs in parallel with increased cytokine expression, inflammatory cell recruitment and oxidative stress. Lipidomic analysis of purified LDs demonstrated that sepsis leads LDs to harbour increased amounts of unsaturated fatty acids, mostly 18:1 and 18:2. An increased content of lipoperoxides within LDs was also observed. Conversely, the impairment of LD formation by inhibition of the DGAT1 enzyme reduces levels of hepatic inflammation and lipid peroxidation markers and ameliorates sepsis-induced liver injury. Conclusions: Our results indicate that sepsis triggers lipid metabolism alterations that culminate in increased liver LD accumulation. Increased LDs are associated with disease severity and liver injury. Moreover, inhibition of LD accumulation decreased the production of inflammatory mediators and lipid peroxidation while improving tissue function, suggesting that LDs contribute to the pathogenesis of liver injury triggered by sepsis. Impact and Implications: Sepsis is a complex life-threatening syndrome caused by dysregulated inflammatory and metabolic host responses to infection. The observation that lipid droplets may contribute to sepsis-associated organ injury by amplifying lipid peroxidation and inflammation provides a rationale for therapeutically targeting lipid droplets and lipid metabolism in sepsis.

7.
Mem Inst Oswaldo Cruz ; 118: e230044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37820117

RESUMO

Lipid droplets (LD) are evolutionarily conserved lipid-enriched organelles with a diverse array of cell- and stimulus-regulated proteins. Accumulating evidence demonstrates that intracellular pathogens exploit LD as energy sources, replication sites, and part of the mechanisms of immune evasion. Nevertheless, LD can also favor the host as part of the immune and inflammatory response to pathogens. The functions of LD in the central nervous system have gained great interest due to their presence in various cell types in the brain and for their suggested involvement in neurodevelopment and neurodegenerative diseases. Only recently have the roles of LD in neuroinfections begun to be explored. Recent findings reveal that lipid remodelling and increased LD biogenesis play important roles for Zika virus (ZIKV) replication and pathogenesis in neural cells. Moreover, blocking LD formation by targeting DGAT-1 in vivo inhibited virus replication and inflammation in the brain. Therefore, targeting lipid metabolism and LD biogenesis may represent potential strategies for anti-ZIKV treatment development. Here, we review the progress in understanding LD functions in the central nervous system in the context of the host response to Zika infection.


Assuntos
Infecções do Sistema Nervoso Central , Gotículas Lipídicas , Infecção por Zika virus , Zika virus , Humanos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/fisiologia , Gotículas Lipídicas/virologia , Lipídeos/fisiologia , Replicação Viral/fisiologia , Zika virus/fisiologia , Infecção por Zika virus/fisiopatologia , Infecção por Zika virus/virologia , Infecções do Sistema Nervoso Central/fisiopatologia , Infecções do Sistema Nervoso Central/virologia
8.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37669865

RESUMO

SARS-CoV-2 induces major cellular lipid rearrangements, exploiting the host's metabolic pathways to replicate. Sterol regulatory element binding proteins (SREBPs) are a family of transcription factors that control lipid metabolism. SREBP1 is associated with the regulation of fatty acids, whereas SREBP2 controls cholesterol metabolism, and both isoforms are associated with lipid droplet (LD) biogenesis. Here, we evaluated the effect of SREBP in a SARS-CoV-2-infected lung epithelial cell line (Calu-3). We showed that SARS-CoV-2 infection induced the activation of SREBP1 and SREBP2 and LD accumulation. Genetic knockdown of both SREBPs and pharmacological inhibition with the dual SREBP activation inhibitor fatostatin promote the inhibition of SARS-CoV-2 replication, cell death, and LD formation in Calu-3 cells. In addition, we demonstrated that SARS-CoV-2 induced inflammasome-dependent cell death by pyroptosis and release of IL-1ß and IL-18, with activation of caspase-1, cleavage of gasdermin D1, was also reduced by SREBP inhibition. Collectively, our findings help to elucidate that SREBPs are crucial host factors required for viral replication and pathogenesis. These results indicate that SREBP is a host target for the development of antiviral strategies.


Assuntos
COVID-19 , Inflamassomos , Humanos , SARS-CoV-2 , Proteína de Ligação a Elemento Regulador de Esterol 1 , Metabolismo dos Lipídeos
9.
Metabolites ; 13(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512587

RESUMO

Brazil has the second-highest COVID-19 death rate worldwide, and Rio de Janeiro is among the states with the highest rate in the country. Although vaccine coverage has been achieved, it is anticipated that COVID-19 will transition into an endemic disease. It is concerning that the molecular mechanisms underlying clinical evolution from mild to severe disease, as well as the mechanisms leading to long COVID-19, are not yet fully understood. NMR and MS-based metabolomics were used to identify metabolites associated with COVID-19 pathophysiology and disease outcome. Severe COVID-19 cases (n = 35) were enrolled in two reference centers in Rio de Janeiro within 72 h of ICU admission, alongside 12 non-infected control subjects. COVID-19 patients were grouped into survivors (n = 18) and non-survivors (n = 17). Choline-related metabolites, serine, glycine, and betaine, were reduced in severe COVID-19, indicating dysregulation in methyl donors. Non-survivors had higher levels of creatine/creatinine, 4-hydroxyproline, gluconic acid, and N-acetylserine, indicating liver and kidney dysfunction. Several changes were greater in women; thus, patients' sex should be considered in pandemic surveillance to achieve better disease stratification and improve outcomes. These metabolic alterations may be useful to monitor organ (dys) function and to understand the pathophysiology of acute and possibly post-acute COVID-19 syndromes.

10.
Front Cardiovasc Med ; 10: 1189320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351283

RESUMO

The emergence of the rare syndrome called vaccine-induced immune thrombocytopenia and thrombosis (VITT) after adenoviral vector vaccines, including ChAdOx1 nCov-19, raises concern about one's predisposing risk factors. Here we report the case of a 56-year-old white man who developed VITT leading to death within 9 days of symptom onset. He presented with superior sagittal sinus thrombosis, right frontal intraparenchymal hematoma, frontoparietal subarachnoid and massive ventricular hemorrhage, and right lower extremity arterial and venous thrombosis. His laboratory results showed elevated D-dimer, C-reactive protein, tissue factor, P-selectin (CD62p), and positive anti-platelet factor 4. The patient's plasma promoted higher CD62p expression in healthy donors' platelets than the controls. Genetic investigation on coagulation, thrombophilia, inflammation, and type I interferon-related genes was performed. From rare variants in European or African genomic databases, 68 single-nucleotide polymorphisms (SNPs) in one allele and 11 in two alleles from common SNPs were found in the patient genome. This report highlights the possible relationship between VITT and genetic variants. Additional investigations regarding the genetic predisposition of VITT are needed.

11.
Curr Res Immunol ; 4: 100058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064788

RESUMO

Concerns for the long-term effects of COVID-19 infection have grown due to frequently reported persisting symptoms that can affect multiple systems for longer than 4 weeks after initial infection, a condition known as long-COVID-19 or post-acute COVID-19 syndrome (PACS). Even nonhospitalized survivors have an elevated risk for the development of thromboinflammatory-associated events, such as ischemic stroke and heart failure, pulmonary embolism and deep vein thrombosis. Recent findings point to the persistence of many mechanisms of hypercoagulability identified to be associated with disease severity and mortality in the acute phase of the disease, such as sustained inflammation and endotheliopathy, accompanied by abnormal fibrin generation and impaired fibrinolysis. Platelets seem to be central to the sustained hypercoagulable state, displaying hyperreactivity to stimuli and increased adhesive capacity. Platelets also contribute to elevated levels of thromboinflammatory mediators and pro-coagulant extracellular vesicles in individuals with ongoing PACS. Despite new advances in the understanding of mechanisms sustaining thromboinflammation in PACS, little is known about what triggers this persistence. In this graphical review, we provide a schematic representation of the known mechanisms and consequences of persisting thromboinflammation in COVID-19 survivors and summarize the hypothesized triggers maintaining this prothrombotic state.

12.
Front Cell Infect Microbiol ; 13: 1067285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875528

RESUMO

Introduction: Influenza A virus (IAV) is one of the leading causes of respiratory tract infections in humans, representing a major public health concern. The various types of cell death have a crucial role in IAV pathogenesis because this virus may trigger both apoptosis and necroptosis in airway epithelial cells in parallel. Macrophages play an important role in the clearance of virus particles, priming the adaptive immune response in influenza. However, the contribution of macrophage death to pathogenesis of IAV infection remains unclear. Methods: In this work, we investigated IAV-induced macrophage death, along with potential therapeutic intervention. We conducted in vitro and in vivo experiments to evaluate the mechanism and the contribution of macrophages death to the inflammatory response induced by IAV infection. Results: We found that IAV or its surface glycoprotein hemagglutinin (HA) triggers inflammatory programmed cell death in human and murine macrophages in a Toll-like receptor-4 (TLR4)- and TNF-dependent manner. Anti-TNF treatment in vivo with the clinically approved drug etanercept prevented the engagement of the necroptotic loop and mouse mortality. Etanercept impaired the IAV-induced proinflammatory cytokine storm and lung injury. Conclusion: In summary, we demonstrated a positive feedback loop of events that led to necroptosis and exacerbated inflammation in IAV-infected macrophages. Our results highlight an additional mechanism involved in severe influenza that could be attenuated with clinically available therapies.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Animais , Camundongos , Etanercepte , Inibidores do Fator de Necrose Tumoral , Apoptose , Macrófagos
13.
J Neuroinflammation ; 20(1): 61, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882750

RESUMO

Zika virus (ZIKV) infection is a global public health concern linked to adult neurological disorders and congenital diseases in newborns. Host lipid metabolism, including lipid droplet (LD) biogenesis, has been associated with viral replication and pathogenesis of different viruses. However, the mechanisms of LD formation and their roles in ZIKV infection in neural cells are still unclear. Here, we demonstrate that ZIKV regulates the expression of pathways associated with lipid metabolism, including the upregulation and activation of lipogenesis-associated transcription factors and decreased expression of lipolysis-associated proteins, leading to significant LD accumulation in human neuroblastoma SH-SY5Y cells and in neural stem cells (NSCs). Pharmacological inhibition of DGAT-1 decreased LD accumulation and ZIKV replication in vitro in human cells and in an in vivo mouse model of infection. In accordance with the role of LDs in the regulation of inflammation and innate immunity, we show that blocking LD formation has major roles in inflammatory cytokine production in the brain. Moreover, we observed that inhibition of DGAT-1 inhibited the weight loss and mortality induced by ZIKV infection in vivo. Our results reveal that LD biogenesis triggered by ZIKV infection is a crucial step for ZIKV replication and pathogenesis in neural cells. Therefore, targeting lipid metabolism and LD biogenesis may represent potential strategies for anti-ZIKV treatment development.


Assuntos
Neuroblastoma , Infecção por Zika virus , Zika virus , Animais , Humanos , Camundongos , Gotículas Lipídicas , Replicação Viral
14.
Nat Commun ; 14(1): 199, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639383

RESUMO

Orally available antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary because of the continuous circulation of new variants that challenge immunized individuals. Because severe COVID-19 is a virus-triggered immune and inflammatory dysfunction, molecules endowed with both antiviral and anti-inflammatory activity are highly desirable. We identified here that kinetin (MB-905) inhibits the in vitro replication of SARS-CoV-2 in human hepatic and pulmonary cell lines. On infected monocytes, MB-905 reduced virus replication, IL-6 and TNFα levels. MB-905 is converted into its triphosphate nucleotide to inhibit viral RNA synthesis and induce error-prone virus replication. Coinhibition of SARS-CoV-2 exonuclease, a proofreading enzyme that corrects erroneously incorporated nucleotides during viral RNA replication, potentiated the inhibitory effect of MB-905. MB-905 shows good oral absorption, its metabolites are stable, achieving long-lasting plasma and lung concentrations, and this drug is not mutagenic nor cardiotoxic in acute and chronic treatments. SARS-CoV-2-infected hACE-mice and hamsters treated with MB-905 show decreased viral replication, lung necrosis, hemorrhage and inflammation. Because kinetin is clinically investigated for a rare genetic disease at regimens beyond the predicted concentrations of antiviral/anti-inflammatory inhibition, our investigation suggests the opportunity for the rapid clinical development of a new antiviral substance for the treatment of COVID-19.


Assuntos
Antivirais , COVID-19 , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2 , Cinetina/farmacologia , Inflamação/tratamento farmacológico , Nucleotídeos , Replicação Viral
15.
Mol Microbiol ; 119(2): 224-236, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36579614

RESUMO

Tuberculosis remains a global health threat with high morbidity. Dendritic cells (DCs) participate in the acute and chronic inflammatory responses to Mycobacterium tuberculosis (Mtb) by directing the adaptive immune response and are present in lung granulomas. In macrophages, the interaction of lipid droplets (LDs) with mycobacteria-containing phagosomes is central to host-pathogen interactions. However, the data available for DCs are still a matter of debate. Here, we reported that bone marrow-derived DCs (BMDCs) were susceptible to Mtb infection and replication at similar rate to macrophages. Unlike macrophages, the analysis of gene expression showed that Mtb infection induced a delayed increase in lipid droplet-related genes and proinflammatory response. Hence, LD accumulation has been observed by high-content imaging in late periods. Infection of BMDCs with killed H37Rv demonstrated that LD accumulation depends on Mtb viability. Moreover, infection with the attenuated strains H37Ra and Mycobacterium bovis-BCG induced only an early transient increase in LDs, whereas virulent Mtb also induced delayed LD accumulation. In addition, infection with the BCG strain with the reintroduced virulence RD1 locus induced higher LD accumulation and bacterial replication when compared to parental BCG. Collectively, our data suggest that delayed LD accumulation in DCs is dependent on mycobacterial viability and virulence.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Gotículas Lipídicas , Virulência , Viabilidade Microbiana , Vacina BCG/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia
16.
Mem. Inst. Oswaldo Cruz ; 118: e230044, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1514605

RESUMO

Lipid droplets (LD) are evolutionarily conserved lipid-enriched organelles with a diverse array of cell- and stimulus-regulated proteins. Accumulating evidence demonstrates that intracellular pathogens exploit LD as energy sources, replication sites, and part of the mechanisms of immune evasion. Nevertheless, LD can also favor the host as part of the immune and inflammatory response to pathogens. The functions of LD in the central nervous system have gained great interest due to their presence in various cell types in the brain and for their suggested involvement in neurodevelopment and neurodegenerative diseases. Only recently have the roles of LD in neuroinfections begun to be explored. Recent findings reveal that lipid remodelling and increased LD biogenesis play important roles for Zika virus (ZIKV) replication and pathogenesis in neural cells. Moreover, blocking LD formation by targeting DGAT-1 in vivo inhibited virus replication and inflammation in the brain. Therefore, targeting lipid metabolism and LD biogenesis may represent potential strategies for anti-ZIKV treatment development. Here, we review the progress in understanding LD functions in the central nervous system in the context of the host response to Zika infection.

17.
Cancers (Basel) ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201433

RESUMO

Neutrophil extracellular traps (NETs) have been implicated in several hallmarks of cancer. Among the protumor effects, NETs promote epithelial-mesenchymal transition (EMT) in different cancer models. EMT has been linked to an enhanced expression of the clotting-initiating protein, tissue factor (TF), thus favoring the metastatic potential. TF may also exert protumor effects by facilitating the activation of protease-activated receptor 2 (PAR2). Herein, we evaluated whether NETs could induce TF expression in breast cancer cells and further promote procoagulant and intracellular signaling effects via the TF/PAR2 axis. T-47D and MCF7 cell lines were treated with isolated NETs, and samples were obtained for real-time PCR, flow cytometry, Western blotting, and plasma coagulation assays. In silico analyses were performed employing RNA-seq data from breast cancer patients deposited in The Cancer Genome Atlas (TCGA) database. A positive correlation was observed between neutrophil/NETs gene signatures and TF gene expression. Neutrophils/NETs gene signatures and PAR2 gene expression also showed a significant positive correlation in the bioinformatics model. In vitro analysis showed that treatment with NETs upregulated TF gene and protein expression in breast cancer cell lines. The inhibition of ERK/JNK reduced the TF gene expression induced by NETs. Remarkably, the pharmacological or genetic inhibition of the TF/PAR2 signaling axis attenuated the NETs-induced expression of several protumor genes. Also, treatment of NETs with a neutrophil elastase inhibitor reduced the expression of metastasis-related genes. Our results suggest that the TF/PAR2 signaling axis contributes to the pro-cancer effects of NETs in human breast cancer cells.

18.
Front Immunol ; 13: 1029213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569864

RESUMO

Introduction: Dengue is an arthropod-born disease caused by dengue virus (DENV), that may manifest as a mild illness or severe form, characterized by hemorrhagic fever and shock. Nitric oxide (NO) is a vasodilator signaling molecule and an inhibitor of platelet aggregation known to be increased in platelets from dengue patients. However, the mechanisms underlying NO synthesis by platelets during dengue are not yet elucidated. IL-1ß is a pro-inflammatory cytokine able to induce iNOS expression in leukocytes and present in dengue patients at high levels. Nevertheless, the role of IL-1ß in platelet activation, especially regarding iNOS expression, are not clear. Methods: We prospectively followed a cohort of 28 dengue-infected patients to study NO synthesis in platelets and its relationship with disease outcomes. We used in vitro infection and stimulation models to gain insights on the mechanisms. Results and Discussion: We confirmed that platelets from dengue patients express iNOS and produce higher levels of NO during the acute phase compared to healthy volunteers, returning to normal levels after recovery. Platelet NO production during acute dengue infection was associated with the presence of warning signs, hypoalbuminemia and hemorrhagic manifestations, suggesting a role in dengue pathophysiology. By investigating the mechanisms, we evidenced increased iNOS expression in platelets stimulated with dengue patients´ plasma, indicating induction by circulating inflammatory mediators. We then investigated possible factors able to induce platelet iNOS expression and observed higher levels of IL-1ß in plasma from patients with dengue, which were correlated with NO production by platelets. Since platelets can synthesize and respond to IL-1ß, we investigated whether IL-1ß induces iNOS expression and NO synthesis in platelets. We observed that recombinant human IL-1ß enhanced iNOS expression and dose-dependently increased NO synthesis by platelets. Finally, platelet infection with DENV in vitro induced iNOS expression and NO production, besides the secretion of both IL-1α and IL-1ß. Importantly, treatment with IL-1 receptor antagonist or a combination of anti-IL-1α and anti-IL-1ß antibodies prevented DENV-induced iNOS expression and NO synthesis. Our data show that DENV induces iNOS expression and NO production in platelets through mechanisms depending on IL-1 receptor signaling.


Assuntos
Vírus da Dengue , Dengue , Humanos , Óxido Nítrico/metabolismo , Plaquetas , Receptores de Interleucina-1/metabolismo
19.
Eat Weight Disord ; 27(8): 3665-3674, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36436143

RESUMO

PURPOSE: SH2B1 gene encodes an important adaptor protein to receptor tyrosine kinases or cytokine receptors associated with Janus kinases. This gene has been associated with the structural and functional modulation of neurons and other cells, and impacts on energy and glucose homeostasis. Several studies suggested that alterations in this gene are strong candidates for the development of obesity. However, only a few studies have screened SH2B1 point variants in individuals with obesity. Therefore, the aim of this study was to investigate the prevalence of SH2B1 variants in a Brazilian cohort of patients with severe obesity and candidates to bariatric surgery. METHODS: The cohort comprised 122 individuals with severe obesity, who developed this phenotype during childhood. As controls, 100 normal-weight individuals were included. The coding region of SH2B1 gene was screened by Sanger sequencing. RESULTS: A total of eight variants were identified in SH2B1, of which p.(Val345Met) and p.(Arg630Gln) variants were rare and predicted as potentially pathogenic by the in the silico algorithms used in this study. The p.(Val345Met) was not found in either the control group or in publicly available databases. This variant was identified in a female patient with severe obesity, metabolic syndrome and hyperglycemia. The p.(Arg630Gln) was also absent in our control group, but it was reported in gnomAD with an extremely low frequency. This variant was observed in a female patient with morbid obesity, metabolic syndrome, hypertension and severe binge-eating disorder. CONCLUSION: Our study reported for the first time two rare and potentially pathogenic variants in Brazilian patients with severe obesity. Further functional studies will be necessary to confirm and elucidate the impact of these variants on SH2B1 protein function and stability, and their impact on energetic metabolism. LEVEL OF EVIDENCE: Level V, cross-sectional descriptive study.


Assuntos
Síndrome Metabólica , Obesidade Mórbida , Humanos , Feminino , Obesidade Mórbida/genética , Brasil , Estudos Transversais , Proteínas Adaptadoras de Transdução de Sinal
20.
Front Immunol ; 13: 958820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189282

RESUMO

Chikungunya fever is a viral disease transmitted by mosquitoes of the genus Aedes. The infection is usually symptomatic and most common symptoms are fever accompanied by joint pain and swelling. In most cases symptoms subside within a week. However, severe prolonged and disabling joint pain, that may persist for several months, even years, are reported. Although the pathogenesis of Chikungunya infection is not fully understood, the evolution to severe disease seems to be associated with the activation of immune mechanisms and the action of inflammatory mediators. Platelets are recognized as inflammatory cells with fundamental activities in the immune response, maintenance of vascular stability and pathogenicity of several inflammatory and infectious diseases. Although the involvement of platelets in the pathogenesis of viral diseases has gained attention in recent years, their activation in Chikungunya has not been explored. The aim of this study was to analyze platelet activation and the possible role of platelets in the amplification of the inflammatory response during Chikungunya infection. We prospectively included 132 patients attended at the Quinta D'Or hospital and 25 healthy volunteers during the 2016 epidemic in Rio de Janeiro, Brazil. We observed increased expression of CD62P on the surface of platelets, as well as increased plasma levels of CD62P and platelet-derived inflammatory mediators indicating that the Chikungunya infection leads to platelet activation. In addition, platelets from chikungunya patients exhibit increased expression of NLRP3, caspase 4, and cleaved IL-1ß, suggestive of platelet-inflammasome engagement during chikungunya infection. In vitro experiments confirmed that the Chikungunya virus directly activates platelets. Moreover, we observed that platelet activation and soluble p-selectin at the onset of symptoms were associated with development of chronic forms of the disease. Collectively, our data suggest platelet involvement in the immune processes and inflammatory amplification triggered by the infection.


Assuntos
Febre de Chikungunya , Inflamassomos , Animais , Artralgia , Brasil , Caspases , Humanos , Inflamassomos/metabolismo , Mediadores da Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Selectina-P , Ativação Plaquetária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA