Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32436, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38933964

RESUMO

Cardiac computed tomography (CCT) has assumed an increasingly significant role in the evaluation of coronary artery disease (CAD) during the past few decades, whereas cardiovascular magnetic resonance (CMR) remains the gold standard for myocardial tissue characterization. The discovery of late myocardial enhancement following intravenous contrast administration dates back to the 1970s with ex-vivo CT animal investigations; nevertheless, the clinical application of this phenomenon for cardiac tissue characterization became prevalent for CMR imaging far earlier than for CCT imaging. Recently the technical advances in CT scanners have made it possible to take advantage of late contrast enhancement (LCE) for tissue characterization in CCT exams. Moreover, the introduction of extracellular volume calculation (ECV) on cardiac CT images combined with the possibility of evaluating cardiac function in the same exam is making CCT imaging a multiparametric technique more and more similar to CMR. The aim of our review is to provide a comprehensive overview on the role of CCT with LCE in the evaluation of a wide range of cardiac conditions.

2.
Heliyon ; 9(6): e17336, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37441401

RESUMO

Hypertrophic heart phenotype is characterized by an abnormal left ventricular (LV) thickening. A hypertrophic phenotype can develop as adaptive response in many different conditions such as aortic stenosis, hypertension, athletic training, infiltrative heart muscle diseases, storage disorders and metabolic disorders. Hypertrophic cardiomyopathy (HCM) is the most frequent primary cardiomyopathy (CMP) and a genetical cause of cardiac hypertrophy. It requires the exclusion of any other cause of LV hypertrophy. Cardiac magnetic resonance (CMR) is a comprehensive imaging technique that allows a detailed evaluation of myocardial diseases. It provides reproducible measurements and myocardial tissue characterization. In clinical practice CMR is increasingly used to confirm the presence of ventricular hypertrophy, to detect the underlying cause of the phenotype and more recently as an efficient prognostic tool. This article aims to provide a detailed overview of the applications of CMR in the setting of hypertrophic heart phenotype and its role in the diagnostic workflow of such condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA