Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35008657

RESUMO

A series of 1,3,5-triazinyl aminobenzenesulfonamides substituted by aminoalcohol, aminostilbene, and aminochalcone structural motifs was synthesized as potential human carbonic anhydrase (hCA) inhibitors. The compounds were evaluated on their inhibition of tumor-associated hCA IX and hCA XII, hCA VII isoenzyme present in the brain, and physiologically important hCA I and hCA II. While the test compounds had only a negligible effect on physiologically important isoenzymes, many of the studied compounds significantly affected the hCA IX isoenzyme. Several compounds showed activity against hCA XII; (E)-4-{2-[(4-[(2,3-dihydroxypropyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (31) and (E)-4-{2-[(4-[(4-hydroxyphenyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (32) were the most effective inhibitors with KIs = 4.4 and 5.9 nM, respectively. In addition, the compounds were tested against vancomycin-resistant Enterococcus faecalis (VRE) isolates. (E)-4-[2-({4-[(4-cinnamoylphenyl)amino]-6-[(4-hydroxyphenyl)amino]-1,3,5-triazin-2-yl}amino)ethyl]benzenesulfonamide (21) (MIC = 26.33 µM) and derivative 32 (MIC range 13.80-55.20 µM) demonstrated the highest activity against all tested strains. The most active compounds were evaluated for their cytotoxicity against the Human Colorectal Tumor Cell Line (HCT116 p53 +/+). Only 4,4'-[(6-chloro-1,3,5-triazin-2,4-diyl)bis(iminomethylene)]dibenzenesulfonamide (7) and compound 32 demonstrated an IC50 of ca. 6.5 µM; otherwise, the other selected derivatives did not show toxicity at concentrations up to 50 µM. The molecular modeling and docking of active compounds into various hCA isoenzymes, including bacterial carbonic anhydrase, specifically α-CA present in VRE, was performed to try to outline a possible mechanism of selective anti-VRE activity.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Sulfonamidas/farmacologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica IX/antagonistas & inibidores , Anidrases Carbônicas/efeitos dos fármacos , Células HCT116 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
2.
Molecules ; 24(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159174

RESUMO

Expansions of trinucleotide repeats (TNRs) are associated with genetic disorders such as Friedreich's ataxia. The tumor suppressor p53 is a central regulator of cell fate in response to different types of insults. Sequence and structure-selective modes of DNA recognition are among the main attributes of p53 protein. The focus of this work was analysis of the p53 structure-selective recognition of TNRs associated with human neurodegenerative diseases. Here, we studied binding of full length p53 and several deletion variants to TNRs folded into DNA hairpins or loops. We demonstrate that p53 binds to all studied non-B DNA structures, with a preference for non-B DNA structures formed by pyrimidine (Py) rich strands. Using deletion mutants, we determined the C-terminal DNA binding domain of p53 to be crucial for recognition of such non-B DNA structures. We also observed that p53 in vitro prefers binding to the Py-rich strand over the purine (Pu) rich strand in non-B DNA substrates formed by sequence derived from the first intron of the frataxin gene. The binding of p53 to this region was confirmed using chromatin immunoprecipitation in human Friedreich's ataxia fibroblast and adenocarcinoma cells. Altogether these observations provide further evidence that p53 binds to TNRs' non-B DNA structures.


Assuntos
DNA/química , DNA/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Conformação de Ácido Nucleico , Expansão das Repetições de Trinucleotídeos , Repetições de Trinucleotídeos , Proteína Supressora de Tumor p53/metabolismo , Expressão Gênica , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Pirimidinas , Proteínas Recombinantes , Proteína Supressora de Tumor p53/química
3.
PLoS One ; 11(12): e0167439, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907175

RESUMO

Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed.


Assuntos
Proteínas de Ligação a DNA/genética , DNA/genética , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/genética , Sítios de Ligação , DNA/química , Proteínas de Ligação a DNA/química , Humanos , Conformação de Ácido Nucleico , Motivos de Nucleotídeos/genética , Plasmídeos/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico/genética , Deleção de Sequência/genética , Proteína Supressora de Tumor p53/química
4.
Biosci Rep ; 36(5)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27634752

RESUMO

G-quadruplexes are four-stranded nucleic acid structures that are implicated in the regulation of transcription, translation and replication. Genome regions enriched in putative G-quadruplex motifs include telomeres and gene promoters. Tumour suppressor p53 plays a critical role in regulatory pathways leading to cell cycle arrest, DNA repair and apoptosis. In addition to transcriptional regulation mediated via sequence-specific DNA binding, p53 can selectively bind various non-B DNA structures. In the present study, wild-type p53 (wtp53) binding to G-quadruplex formed by MYC promoter nuclease hypersensitive element (NHE) III1 region was investigated. Wtp53 binding to MYC G-quadruplex is comparable to interaction with specific p53 consensus sequence (p53CON). Apart from the full-length wtp53, its isolated C-terminal region (aa 320-393) as well, is capable of high-affinity MYC G-quadruplex binding, suggesting its critical role in this type of interaction. Moreover, wtp53 binds to MYC promoter region containing putative G-quadruplex motif in two wtp53-expressing cell lines. The results suggest that wtp53 binding to G-quadruplexes can take part in transcriptional regulation of its target genes.


Assuntos
Proteínas de Ligação a DNA/genética , Quadruplex G , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Supressora de Tumor p53/genética , Dicroísmo Circular , DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Células HCT116 , Humanos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Supressora de Tumor p53/metabolismo
5.
Bioconjug Chem ; 27(9): 2089-94, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27479485

RESUMO

Nucleotides, 2'-deoxyribonucleoside triphosphates (dNTPs), and DNA probes bearing reactive chloroacetamido group linked to nucleobase (cytosine or 7-deazadaenine) through a propargyl tether were prepared and tested in cross-linking with cysteine- or histidine-containing peptides and proteins. The chloroacetamide-modifed dNTPs proved to be good substrates for DNA polymerases in the enzymatic synthesis of modified DNA probes. Modified nucleotides and DNA reacted efficiently with cysteine and cysteine-containing peptides, whereas the reaction with histidine was sluggish and low yielding. The modified DNA efficiently cross-linked with p53 protein through alkylation of cysteine and showed potential for cross-linking with histidine (in C277H mutant of p53).


Assuntos
Acetamidas/química , DNA/química , Nucleotídeos/química , Peptídeos/química , Proteínas/química , Cisteína/química , Transporte de Elétrons , Histidina/química , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica
6.
Biochimie ; 128-129: 83-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27422117

RESUMO

The tumor suppressor protein p53 is a key factor in genome stability and one of the most studied of DNA binding proteins. This is the first study on the interaction of wild-type p53 with guanine quadruplexes formed by the human telomere sequence. Using electromobility shift assay and ELISA, we show that p53 binding to telomeric G-quadruplexes increases with the number of telomeric repeats. Further, p53 strongly favors G-quadruplexes folded in potassium over those formed in sodium, thus indicating the telomeric G-quadruplex conformational selectivity of p53. The presence of the quadruplex-stabilizing ligand, N-methyl mesoporphyrin IX (NMM), increases p53 recognition of G-quadruplexes in potassium. Using deletion mutants and selective p53 core domain oxidation, both p53 DNA binding domains are shown to be crucial for telomeric G-quadruplex recognition.


Assuntos
DNA/química , Quadruplex G , Telômero/química , Proteína Supressora de Tumor p53/química , Sequência de Bases , Sítios de Ligação/genética , Ligação Competitiva , Dicroísmo Circular , DNA/genética , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Humanos , Mesoporfirinas/química , Mutação , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Potássio/química , Ligação Proteica , Sequências de Repetição em Tandem/genética , Telômero/genética , Telômero/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Chemistry ; 21(45): 16091-102, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26377361

RESUMO

N-(3-Azidopropyl)vinylsulfonamide was developed as a new bifunctional bioconjugation reagent suitable for the cross-linking of biomolecules through copper(I)-catalyzed azide-alkyne cycloaddition and thiol Michael addition reactions under biorthogonal conditions. The reagent is easily clicked to an acetylene-containing DNA or protein and then reacts with cysteine-containing peptides or proteins to form covalent cross-links. Several examples of bioconjugations of ethynyl- or octadiynyl-modified DNA with peptides, p53 protein, or alkyne-modified human carbonic anhydrase with peptides are given.


Assuntos
Alcinos/química , Azidas/química , Anidrases Carbônicas/química , DNA/química , Indicadores e Reagentes/química , Peptídeos/química , Compostos de Sulfidrila/química , Sulfonamidas/química , Compostos de Vinila/química , Fenômenos Biológicos , Anidrases Carbônicas/metabolismo , Catálise , Química Click , Cobre/química , Reação de Cicloadição , DNA/metabolismo , Humanos , Peptídeos/metabolismo
8.
Int J Mol Sci ; 16(2): 3163-77, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25647416

RESUMO

A study of the effects of salt conditions on the association and dissociation of wild type p53 with different ~3 kbp long plasmid DNA substrates (supercoiled, relaxed circular and linear, containing or lacking a specific p53 binding site, p53CON) using immunoprecipitation at magnetic beads is presented. Salt concentrations above 200 mM strongly affected association of the p53 protein to any plasmid DNA substrate. Strikingly different behavior was observed when dissociation of pre-formed p53-DNA complexes in increased salt concentrations was studied. While contribution from the p53CON to the stability of the p53-DNA complexes was detected between 100 and 170 mM KCl, p53 complexes with circular DNAs (but not linear) exhibited considerable resistance towards salt treatment for KCl concentrations as high as 2 M provided that the p53 basic C-terminal DNA binding site (CTDBS) was available for DNA binding. On the contrary, when the CTDBS was blocked by antibody used for immunoprecipitation, all p53-DNA complexes were completely dissociated from the p53 protein in KCl concentrations≥200 mM under the same conditions. These observations suggest: (a) different ways for association and dissociation of the p53-DNA complexes in the presence of the CTDBS; and (b) a critical role for a sliding mechanism, mediated by the C-terminal domain, in the dissociation process.


Assuntos
Plasmídeos/metabolismo , Sais/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Conformação de Ácido Nucleico , Plasmídeos/química , Cloreto de Potássio/farmacologia , Ligação Proteica/efeitos dos fármacos
9.
Chem Sci ; 6(1): 575-587, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970873

RESUMO

New redox labelling of DNA by an azido group which can be chemically transformed to nitrophenyltriazole or silenced to phenyltriazole was developed and applied to the electrochemical detection of DNA-protein interactions. 5-(4-Azidophenyl)-2'-deoxycytidine and 7-(4-azidophenyl)-7-deaza-2'-deoxyadenosine nucleosides were prepared by aqueous-phase Suzuki cross-coupling and converted to nucleoside triphosphates (dNTPs) which served as substrates for incorporation into DNA by DNA polymerase. The azidophenyl-modified nucleotides and azidophenyl-modified DNA gave a strong signal in voltammetric studies, at -0.9 V, due to reduction of the azido function. The Cu-catalyzed click reaction of azidophenyl-modified nucleosides or azidophenyl-modified DNA with 4-nitrophenylacetylene gave nitrophenyl-substituted triazoles, exerting a reduction peak at -0.4 V under voltammetry, whereas the click reaction with phenylacetylene gave electrochemically silent phenyltriazoles. The transformation of the azidophenyl label to nitrophenyltriazole was used for electrochemical detection of DNA-protein interactions (p53 protein) since only those azidophenyl groups in the parts of the DNA not shielded by the bound p53 protein were transformed to nitrophenyltriazoles, whereas those covered by the protein were not.

10.
Biochem Biophys Res Commun ; 456(1): 29-34, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25446071

RESUMO

Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt, which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50µM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA-protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA-p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed.


Assuntos
Cádmio/química , Cobalto/química , Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Membrana/química , Níquel/química , Proteínas Nucleares/química , Proteínas Supressoras de Tumor/química , Linhagem Celular Tumoral , Ditiotreitol/química , Ácido Edético/química , Humanos , Metais/química , Metais Pesados/química , Ligação Proteica , Estrutura Terciária de Proteína , Ativação Transcricional , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/química
11.
Anal Chim Acta ; 828: 1-8, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24845809

RESUMO

Electrochemical biosensors have the unique ability to convert biological events directly into electrical signals suitable for parallel analysis. Here we utilize specific properties of constant current chronopotentiometric stripping (CPS) in the analysis of protein and DNA-protein complex nanolayers. Rapid potential changes at high negative current intensities (Istr) in CPS are utilized in the analysis of DNA-protein interactions at thiol-modified mercury electrodes. P53 core domain (p53CD) sequence-specific binding to DNA results in a striking decrease in the electrocatalytic signal of free p53. This decrease is related to changes in the accessibility of the electroactive amino acid residues in the p53CD-DNA complex. By adjusting Istr and temperature, weaker non-specific binding can be eliminated or distinguished from the sequence-specific binding. The method also reflects differences in the stabilities of different sequence-specific complexes, including those containing spacers between half-sites of the DNA consensus sequence. The high resolving power of this method is based on the disintegration of the p53CD-DNA complex by the electric field effects at a negatively charged surface and fine adjustment of the millisecond time intervals for which the complex is exposed to these effects. Picomole amounts of p53 proteins and DNA were used for the analysis at full electrode coverage but we show that even 10-20-fold smaller amounts can be analyzed. Our method cannot however take advantage of very low detection limits of the protein CPS detection because low I(str) intensities are deleterious to the p53CD-DNA complex stability at the electrode surface. These data highlight the utility of developing biosensors offering novel approaches for studying real-time macromolecular protein dynamics.


Assuntos
Técnicas Biossensoriais , DNA/análise , DNA/química , Técnicas Eletroquímicas , Proteína Supressora de Tumor p53/análise , Proteína Supressora de Tumor p53/química , Eletrodos , Humanos , Mercúrio/química , Compostos de Sulfidrila/química
12.
Biopolymers ; 101(4): 428-38, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24037480

RESUMO

For mimicking macromolecular crowding of DNA quadruplexes, various crowding agents have been used, typically PEG, with quadruplexes of micromolar strand concentrations. Thermal and thermodynamic stabilities of these quadruplexes increased with the concentration of the agents, the rise depended on the crowder used. A different phenomenon was observed, and is presented in this article, when the crowder was the quadruplex itself. With DNA strand concentrations ranging from 3 µM to 9 mM, the thermostability did not change up to ∼2 mM, above which it increased, indicating that the unfolding quadruplex units were not monomolecular above ∼2 mM. The results are explained by self-association of the G-quadruplexes above this concentration. The ΔG(°) 37 values, evaluated only below 2 mM, did not become more negative, as with the non-DNA crowders, instead, slightly increased. Folding topology changed from antiparallel to hybrid above 2 mM, and then to parallel quadruplexes at high, 6-9 mM strand concentrations. In this range, the concentration of the DNA phosphate anions approached the concentration of the K(+) counterions used. Volume exclusion is assumed to promote the topological changes of quadruplexes toward the parallel, and the decreased screening of anions could affect their stability.


Assuntos
DNA/química , Quadruplex G , Telômero/química , Dicroísmo Circular , Densitometria , Eletroforese em Gel de Poliacrilamida , Entropia , Humanos , Microscopia de Força Atômica , Espectrofotometria Ultravioleta
13.
Angew Chem Int Ed Engl ; 52(40): 10515-8, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23939933

RESUMO

Bioorthogonal covalent cross-linking of DNA-binding proteins (p53) to DNA was achieved through novel DNA probes bearing a reactive vinylsulfonamide (VS) group. The VS-modified dCTP served as building block for polymerase synthesis of modified DNA, which was readily conjugated with cysteine-containing peptides and proteins by Michael addition.


Assuntos
Acrilamida/química , DNA/química , Proteínas/química , Sulfonamidas/química , Compostos de Vinila/química , Acrilamida/síntese química , Reagentes de Ligações Cruzadas/química , DNA/síntese química , DNA Polimerase Dirigida por DNA/química , Etilenos/química , Modelos Moleculares , Proteínas/metabolismo , Sulfonamidas/síntese química , Ácidos Sulfônicos/química , Compostos de Vinila/síntese química
14.
PLoS One ; 8(3): e59567, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555710

RESUMO

Hot spot mutant p53 (mutp53) proteins exert oncogenic gain-of-function activities. Binding of mutp53 to DNA is assumed to be involved in mutp53-mediated repression or activation of several mutp53 target genes. To investigate the importance of DNA topology on mutp53-DNA recognition in vitro and in cells, we analyzed the interaction of seven hot spot mutp53 proteins with topologically different DNA substrates (supercoiled, linear and relaxed) containing and/or lacking mutp53 binding sites (mutp53BS) using a variety of electrophoresis and immunoprecipitation based techniques. All seven hot spot mutp53 proteins (R175H, G245S, R248W, R249S, R273C, R273H and R282W) were found to have retained the ability of wild-type p53 to preferentially bind circular DNA at native negative superhelix density, while linear or relaxed circular DNA was a poor substrate. The preference of mutp53 proteins for supercoiled DNA (supercoil-selective binding) was further substantiated by competition experiments with linear DNA or relaxed DNA in vitro and ex vivo. Using chromatin immunoprecipitation, the preferential binding of mutp53 to a sc mutp53BS was detected also in cells. Furthermore, we have shown by luciferase reporter assay that the DNA topology influences p53 regulation of BAX and MSP/MST1 promoters. Possible modes of mutp53 binding to topologically constrained DNA substrates and their biological consequences are discussed.


Assuntos
DNA Super-Helicoidal/metabolismo , Proteínas Mutantes/metabolismo , Mutação , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , DNA Super-Helicoidal/química , Regulação da Expressão Gênica/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Especificidade por Substrato , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2/genética
15.
Biochem Biophys Res Commun ; 433(4): 445-9, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23501101

RESUMO

Cysteine oxidation and covalent modification of redox sensitive transcription factors including p53 are known, among others, as important events in cell response to oxidative stress. All p53 family proteins p53, p63 and p73 act as stress-responsive transcription factors. Oxidation of p53 central DNA binding domain destroys its structure and abolishes its sequence-specific binding by affecting zinc ion coordination at the protein-DNA interface. Proteins p63 and p73 can bind the same response elements as p53 but exhibit distinct functions. Moreover, all three proteins contain highly conserved cysteines in central DNA binding domain suitable for possible redox modulation. In this work we report for the first time the redox sensitivity of p63 and p73 core domains to a thiol oxidizing agent azodicarboxylic acid bis[dimethylamide] (diamide). Oxidation of both p63 and p73 abolished sequence-specific binding to p53 consensus sequence, depending on the agent concentration. In the presence of specific DNA all p53 family core domains were partially protected against loss of DNA binding activity due to diamide treatment. Furthermore, we detected conditional reversibility of core domain oxidation for all p53 family members and a role of zinc ions in this process. We showed that p63 and p73 proteins had greater ability to resist the diamide oxidation in comparison with p53. Our results show p63 and p73 as redox sensitive proteins with possible functionality in response of p53 family proteins to oxidative stress.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas Nucleares/química , Proteína Supressora de Tumor p53/química , Proteínas Supressoras de Tumor/química , Sequência de Bases , Cisteína/química , DNA/química , Proteínas de Ligação a DNA/síntese química , Diamida/química , Ditiotreitol/química , Ácido Edético/química , Eletroforese em Gel de Ágar , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Proteínas Nucleares/síntese química , Oxirredução , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/síntese química , Proteínas Supressoras de Tumor/síntese química , Zinco/química
16.
Cell Cycle ; 11(17): 3290-303, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22894900

RESUMO

The molecular mechanisms underlying mutant p53 (mutp53) "gain-of-function" (GOF) are still insufficiently understood, but there is evidence that mutp53 is a transcriptional regulator that is recruited by specialized transcription factors. Here we analyzed the binding sites of mutp53 and the epigenetic status of mutp53-regulated genes that had been identified by global expression profiling upon depletion of endogenous mutp53 (R273H) expression in U251 glioblastoma cells. We found that mutp53 preferentially and autonomously binds to G/C-rich DNA around transcription start sites (TSS) of many genes characterized by active chromatin marks (H3K4me3) and frequently associated with transcription-competent RNA polymerase II. Mutp53-bound regions overlap predominantly with CpG islands and are enriched in G4-motifs that are prone to form G-quadruplex structures. In line, mutp53 binds and stabilizes a well-characterized G-quadruplex structure in vitro. Hence, we assume that binding of mutp53 to G/C-rich DNA regions associated with a large set of cancer-relevant genes is an initial step in their regulation by mutp53. Using GAS1 and HTR2A as model genes, we show that mutp53 affects several parameters of active transcription. Finally, we discuss a dual mode model of mutp53 GOF, which includes both stochastic and deterministic components.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Elementos Reguladores de Transcrição/fisiologia , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Perfilação da Expressão Gênica , Guanosina/metabolismo , Humanos , Mutação/genética , Reação em Cadeia da Polimerase , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Elementos Reguladores de Transcrição/genética , Proteína Supressora de Tumor p53/genética
17.
Bioinformatics ; 27(18): 2510-7, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21791534

RESUMO

MOTIVATION: Current methods for identification of potential triplex-forming sequences in genomes and similar sequence sets rely primarily on detecting homopurine and homopyrimidine tracts. Procedures capable of detecting sequences supporting imperfect, but structurally feasible intramolecular triplex structures are needed for better sequence analysis. RESULTS: We modified an algorithm for detection of approximate palindromes, so as to account for the special nature of triplex DNA structures. From available literature, we conclude that approximate triplexes tolerate two classes of errors. One, analogical to mismatches in duplex DNA, involves nucleotides in triplets that do not readily form Hoogsteen bonds. The other class involves geometrically incompatible neighboring triplets hindering proper alignment of strands for optimal hydrogen bonding and stacking. We tested the statistical properties of the algorithm, as well as its correctness when confronted with known triplex sequences. The proposed algorithm satisfactorily detects sequences with intramolecular triplex-forming potential. Its complexity is directly comparable to palindrome searching. AVAILABILITY: Our implementation of the algorithm is available at http://www.fi.muni.cz/lexa/triplex as source code and a web-based search tool. The source code compiles into a library providing searching capability to other programs, as well as into a stand-alone command-line application based on this library. CONTACT: lexa@fi.muni.cz SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , DNA/metabolismo , Escherichia coli K12/genética , Análise de Sequência de DNA/métodos , Pareamento Incorreto de Bases , Sequência de Bases , DNA/química , Genoma , Humanos , Sequências Repetidas Invertidas , Funções Verossimilhança , Conformação de Ácido Nucleico
18.
Anal Chim Acta ; 668(2): 166-70, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20493293

RESUMO

In this paper we extend the application area of the label-free structure-sensitive electrochemical DNA sensing with mercury-based electrodes which is for the first time used, in combination with immunoprecipitation at magnetic beads (MB), for the probing of DNA interactions with tumor suppressor protein p53. The technique relies on capture of the p53-DNA complexes at MB via anti-p53 antibodies, followed by salt-induced dissociation of linear DNA from the complex and its voltammetric detection. Competitive binding of p53 to various plasmid DNA substrates, including lin or scDNAs with or without a specific target site, can easily be followed by ex situ electrochemical analysis of DNA recovered from the immunoprecipitated complexes. Compared to gel electrophoresis which is usually applied to analyze different plasmid DNA forms and their complexes with proteins, the electrochemical detection is faster and allows simpler quantitation of DNA containing free ends at submicrogram levels. We demonstrate applicability of the proposed technique to monitor different DNA-binding activities of wild type and mutant p53 proteins.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Imunoprecipitação , Proteína Supressora de Tumor p53 , Animais , Sítios de Ligação , Ligação Competitiva , Técnicas Biossensoriais/métodos , DNA/metabolismo , Técnicas Eletroquímicas/métodos , Eletrodos , Eletroforese em Gel de Ágar , Humanos , Imunoprecipitação/métodos , Magnetismo , Mercúrio , Camundongos , Proteína Supressora de Tumor p53/análise , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
Cancer Genet Cytogenet ; 197(2): 107-16, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20193843

RESUMO

Stable cell lines obtained by spontaneous immortalization might represent early stages of malignant transformation and be useful experimental models for studies of mechanisms of cancer development. The FHC (fetal human cells) cell line has been established from normal fetal colonic mucosa. Detailed characterization of this cell line and mechanism of spontaneously acquired immortality have not been described yet. Therefore, we characterized the FHC cell line in terms of its tumorigenicity, cytogenetics, and TP53 gene mutation analysis. FHC cells displayed capability for anchorage-independent growth in semisolid media in vitro and formed solid tumors after transplantation into SCID (severe combined immunodeficiency) mice. This tumorigenic phenotype was associated with hypotriploidy and chromosome number ranging from 66 to 69. Results of comparative genetic hybridization arrays showed that most chromosomes included regions of copy number gains or losses. Region 8q23 approximately 8q24.3 (containing, e.g., MYC proto-oncogene) was present in more than 20 copies per nucleus. Moreover, we identified mutation of TP53 gene in codon 273; triplet CGT coding Arg was changed to CAG coding His. Expression of Pro codon 72 polymorphic variant of p53 was also detected. Mutation of TP53 gene was associated with abolished induction of p21(Waf1/Cip1) and MDM-2 proteins and resistance to apoptosis after genotoxic treatment. Because of their origin from normal fetal colon and their relative resistance to the induction of apoptosis, FHC cells can be considered a valuable experimental model for various studies.


Assuntos
Colo/fisiologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Genes p53 , Animais , Apoptose/fisiologia , Antígeno Carcinoembrionário/metabolismo , Adesão Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Transformada , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Colo/citologia , Colo/metabolismo , Hibridização Genômica Comparativa , Análise Citogenética/métodos , Dano ao DNA , Análise Mutacional de DNA/métodos , Feminino , Feto/citologia , Células HCT116 , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Queratinas/metabolismo , Camundongos , Camundongos SCID , Transplante de Neoplasias , Fenótipo , Proto-Oncogene Mas , Transdução de Sinais
20.
Biochem Biophys Res Commun ; 393(4): 894-9, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20175992

RESUMO

Selective binding of the wild type tumor suppressor protein p53 to negatively and positively supercoiled (sc) DNA was studied using intercalative drugs chloroquine (CQ), ethidium bromide, acridine derivatives and doxorubicin as a modulators of the level of DNA supercoiling. The p53 was found to lose gradually its preferential binding to negatively scDNA with increasing concentrations of intercalators until the DNA negative superhelix turns were relaxed. Formation of positive superhelices (due to further increasing intercalator concentrations) rendered the circular duplex DNA to be preferentially bound by the p53 again. CQ at concentrations modulating the closed circular DNA topology did not prevent the p53 from recognizing a specific target sequence within topologically unconstrained linear DNA. Experiments with DNA topoisomer distributions differing in their superhelix densities revealed the p53 to bind selectively DNA molecules possessing higher number of negative or positive superturns. Possible modes of the p53 binding to the negatively or positively supercoiled DNA and tentative biological consequences are discussed.


Assuntos
DNA Super-Helicoidal/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acridinas/química , Acridinas/farmacologia , Ligação Competitiva , Cloroquina/química , Cloroquina/farmacologia , DNA Super-Helicoidal/química , DNA Super-Helicoidal/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , Proteína Supressora de Tumor p53/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...