Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39037387

RESUMO

The use and compatibility of a dual-ionization TOFMS operating an EI source and a CI source in parallel using a single TOF mass analyzer with flow modulated two-dimensional GC (GC×GC) is described. Important figures of merit of the mass spectrometer that are required for two-dimensional GC hyphenation such as acquisition speed, ion source response, EI/CI switching, the GC transfer, and data alignment are carefully investigated and addressed. Improved fast switching ion optics allow switching in a 100 Hz frequency between EI and CI spectra sampled from the same GC×GC effluent. The spectra quality also influenced by the preseparation, especially of the EI source, is compared to a standard setup operating a single quadrupole MS coupled to the same GC system. Further, two setups including and excluding an additional flame ionization detector are presented. High increments in CI sensitivities are achieved by utilizing the high pumping efficiencies of the CI stage of the used mass spectrometer. By leading high flow ratios of the GC×GC modulation flows toward the CI source, the intensity can be increased by factors of up to 37 while maintaining the pressure balance of the less robust EI source. Finally, thermal desorption GC×GC-EI&CI-TOFMS analyses of traffic emission samples from a federal highway in Germany are executed with the presented setup.

2.
Anal Chem ; 96(16): 6122-6130, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38603779

RESUMO

The evaluation of nontarget analysis (NTA) techniques for the monitoring of wastewater is important as wastewater is an anthropogenic pollution source for aquatic ecosystems and a threat to human and environmental health. This study presents the proof-of-concept NTA of industrial wastewater samples. A prototype hydrophilic-lipophilic-balanced (HLB) SPME and gas chromatography interfaced with time-of-flight high-resolution mass spectrometry (GC-TOFMS) with electron ionization (EI) and chemical ionization (CI) in parallel are employed. The HLB-SPME consists of a poly(divinylbenzene-co-N-vinylpyrrolidone) structure, allowing the extraction of hydrophilic as well as lipophilic substances. As the combination of parallel CI and EI data provides a comprehensive data set as a unique feature, this study is strongly focused on the compound identification procedure and confidence reporting of exemplary substances. Furthermore, the use of three different CI reagent ions, including [N2H]+/[N4H]+, [H3O]+, and [NH4]+, enables a broad range of analytes to be ionized in terms of selectivity and softness. The complementary information provided by EI and CI data allows a level 3 identification or higher in 69% of cases. The polarity coverage based on the physicochemical properties of the analytes (such as volatility, water solubility, hydrophilicity, and lipophilicity) was visualized by using Henry's law and octanol-water partitioning constants. In conclusion, the presented approach is shown to be valuable for water analysis and allows enhanced and accelerated compound identification compared to utilizing only one type of ionization.

3.
Rapid Commun Mass Spectrom ; 37(7): e9461, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565273

RESUMO

RATIONALE: Volatile organic compounds (VOCs) emitted by an artificial leather part for car interiors are determined using GC-MS (gas chromatograph coupled to a mass spectrometer) using simultaneous electron and chemical ionization (EI&CI). A device for swift reagent ion switching in CI mode between consecutive runs is presented. METHODS: VOCs emitted from the investigated material were sampled onto Tenax® absorption tubes using micro emission chambers and subsequently injected into the GC through thermal desorption. The detector was a time-of-flight mass spectrometer (TOFMS) simultaneously operating in EI and CI modes during a single chromatographic run. A custom permeation tube setup allowed for swift selection between various reagent ions in CI mode, e.g., [N2 H]+ , [H3 O]+ , [(H2 O)2 H]+ , and [NH4 ]+ . RESULTS: Different reagent ions are swiftly selectable between single GC runs without hardware changes. Differences in precursor ion survival yields and the selectivity of the various reactants were carefully assessed. Several examples for the improved identification of unknown compounds with the available complementary and comprehensive EI&CI data set are demonstrated for a relevant material emission application. CONCLUSION: The presented technique provides additional value to the standard GC-EI/MS procedure commonly used for material emission characterization. It allows for a non-targeted analysis approach with moderate analysis time.

4.
Anal Chem ; 94(15): 6057-6064, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35388701

RESUMO

This work describes a novel mass spectrometer coupled to gas chromatography (GC-MS) that simultaneously displays the mass spectral information of electron (EI)- and chemical ionization (CI)-generated ion populations for a single chromatographic peak. After GC separation, the eluent is equally split and supplied in parallel to an EI and a novel CI source, both operating continuously. Precise switching of the ion optics provides the exact timing to consecutively extract the respective ion population from both sources and transfer them into a time-of-flight (TOF) mass analyzer. This technique enables the acquisition of complementary information from both ion populations (EI and CI) within a single chromatographic run and with sufficient data points to retain the chromatographic fidelity. The carefully designed GC transfer setup, fast ion optical switching, and synchronized TOF data acquisition system provide an automatic and straightforward spectral alignment of two ion populations. With an eluent split ratio of about 50% between the two ion sources, instrument detection limits of <40 fg on the column (octafluoronaphthalene) for the EI and <2 pg (benzophenone) for the CI source were obtained. The system performance and the additional analytical value for compound identification are demonstrated by means of different common GC standard mixtures and a commercial perfume sample of unknown composition.


Assuntos
Elétrons , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas
5.
J Am Soc Mass Spectrom ; 33(3): 499-509, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35164508

RESUMO

The construction, critical evaluation, and performance assessment of a medium-pressure (2-13 mbar), high-temperature chemical ionization (CI) source for application in GC-MS is described. The ion source is coupled to a commercial time-of-flight (TOF) mass analyzer. Reagent ions are generated in a two staged process. The first stage uses a filament free, helical resonator plasma (HRP) driven ion source for H3+ generation. Reagent gases, for example, nitrogen, isobutane, and methane are added in a second stage to the H3+ stream, which leads to the formation of final protonation reagents. The GC effluent is added subsequently to the reagent ion gas stream. Designed for the hyphenation with gas chromatography, this GC-CI-TOFMS combination produces GC limited Gaussian peak shapes even for high boiling point compounds. Limits of detection for the compounds investigated are determined as 0.4-1.2 pg on column with nitrogen, 0.6-12.6 pg with isobutane, and 2 pg to >25 pg with methane as reagent gas, respectively. An EPA 8270 LCS mix containing 78 main EPA pollutants is used to evaluate the selectivity of the different reagent ions. Using nitrogen as reagent gas, 74 of 78 compounds are detected. In comparison, 41 of 78 compounds and 62 of 78 compounds are detected with isobutane or methane as CI reagent gas, respectively.

6.
Nature ; 581(7807): 184-189, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32405020

RESUMO

A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog1,2, but how it occurs in cities is often puzzling3. If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms4,5.

7.
J Am Soc Mass Spectrom ; 31(4): 773-784, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32150403

RESUMO

The effects of liquid and gas phase additives (chemical modifiers) on the ion signal distribution for Substance P (SP), recorded with a nanoelectrospray setup, are evaluated. Depletion of the higher charge state of Substance P ([SP+3H]3+) is observed with polar protic gas phase modifiers. This is attributed to their ability to form larger hydrogen-bonded clusters, whose proton affinity increases with cluster size. These clusters are able to deprotonate the higher charge state. "Supercharging agents" (SCAs) as well as aprotic polar gas phase modifiers, which promote the retention of the higher charge state of Substance P, do not form such large clusters under the given conditions and are therefore not able to deprotonate Substance P. Both SCAs and aprotic modifiers form clusters with the higher charge state, leading to stabilization of the charge. Whereas supercharging agents have low vapor pressures and are therefore enriched in late-stage electrospray droplets, the gas phase modifiers are volatile organic solvents. Collision induced dissociation experiments revealed that the addition of a modifier significantly delays the droplet evaporation and ion release process. This indicates that the droplet takes up the gas phase modifier to a certain extent (accommodation). Depending on the modifier's properties either charge depletion or retention may eventually be promoted.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/métodos , Substância P/química , Arginina/química , Dimetil Sulfóxido/química , Ligação de Hidrogênio , Lisina/química , Prótons , Solventes/química , Tiofenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...