Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(24): 21474-21484, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360452

RESUMO

From a circular economy perspective, one-pot strategies for the isolation of cellulose nanomaterials at a high yield and with multifunctional properties are attractive. Here, the effects of lignin content (bleached vs unbleached softwood kraft pulp) and sulfuric acid concentration on the properties of crystalline lignocellulose isolates and their films are explored. Hydrolysis at 58 wt % sulfuric acid resulted in both cellulose nanocrystals (CNCs) and microcrystalline cellulose at a relatively high yield (>55%), whereas hydrolysis at 64 wt % gave CNCs at a lower yield (<20%). CNCs from 58 wt % hydrolysis were more polydisperse and had a higher average aspect ratio (1.5-2×), a lower surface charge (2×), and a higher shear viscosity (100-1000×). Hydrolysis of unbleached pulp additionally yielded spherical nanoparticles (NPs) that were <50 nm in diameter and identified as lignin by nanoscale Fourier transform infrared spectroscopy and IR imaging. Chiral nematic self-organization was observed in films from CNCs isolated at 64 wt % but not from the more heterogeneous CNC qualities produced at 58 wt %. All films degraded to some extent under simulated sunlight trials, but these effects were less pronounced in lignin-NP-containing films, suggesting a protective feature, but the hemicellulose content and CNC crystallinity may be implicated as well. Finally, heterogeneous CNC compositions obtained at a high yield and with improved resource efficiency are suggested for specific nanocellulose uses, for instance, as thickeners or reinforcing fillers, representing a step toward the development of application-tailored CNC grades.

2.
ACS Omega ; 7(19): 16793-16802, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601329

RESUMO

The demand for carbon fibers (CFs) based on renewable raw materials as the reinforcing fiber in composites for lightweight applications is growing. Lignin-cellulose precursor fibers (PFs) are a promising alternative, but so far, there is limited knowledge of how to continuously convert these PFs under industrial-like conditions into CFs. Continuous conversion is vital for the industrial production of CFs. In this work, we have compared the continuous conversion of lignin-cellulose PFs (50 wt % softwood kraft lignin and 50 wt % dissolving-grade kraft pulp) with batchwise conversion. The PFs were successfully stabilized and carbonized continuously over a total time of 1.0-1.5 h, comparable to the industrial production of CFs from polyacrylonitrile. CFs derived continuously at 1000 °C with a relative stretch of -10% (fiber contraction) had a conversion yield of 29 wt %, a diameter of 12-15 µm, a Young's modulus of 46-51 GPa, and a tensile strength of 710-920 MPa. In comparison, CFs obtained at 1000 °C via batchwise conversion (12-15 µm diameter) with a relative stretch of 0% and a conversion time of 7 h (due to the low heating and cooling rates) had a higher conversion yield of 34 wt %, a higher Young's modulus (63-67 GPa) but a similar tensile strength (800-920 MPa). This suggests that the Young's modulus can be improved by the optimization of the fiber tension, residence time, and temperature profile during continuous conversion, while a higher tensile strength can be achieved by reducing the fiber diameter as it minimizes the risk of critical defects.

3.
ACS Omega ; 5(23): 13703-13711, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32566835

RESUMO

The potential to modify pulp and paper properties by oxygen delignification was assessed by looking beyond the ordinary purpose of oxygen delignification. Pulps with the same kappa number were obtained by both pulping and the combination of pulping and oxygen delignification, and the mechanical and chemical properties were compared. The oxidation of pulp components leads to an increase in carboxylic acid groups in the fibers, resulting in a large influence on fiber swelling, seen as an increase in the water retention value and fiber saturation point. The introduction of charged groups appears to replace some of the morphological changes caused by refining and enhance the strength of fiber-fiber joints, generating pulps with better refinability and higher tensile strength. Oxygen delignification was able to improve the tensile index with 6% at the same sheet density and less refining energy, when the amount of total fiber charges was higher than 140 µekv/g.

5.
Carbohydr Polym ; 133: 179-86, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26344270

RESUMO

Polymeric hemicelluloses were extracted by autohydrolysis and alkali from a biomass feed consisting of the stems of rapeseed straw according to a full statistical factorial screening design. Water extraction yielded fractions rich in galactoglucomannan, while alkaline extraction yielded primarily xylan. The extracted galactoglucomannan and xylans had similar molecular weights, while the yield of xylan was higher than the yield of galactoglucomannan. The extracted hemicellulose fractions also contained some lignin (7-15%) and traces of Ca, K, Na, and Si. Free-standing films were prepared from the hemicellulose fractions with different xylan:galactoglucomannan ratios. The rapeseed xylan films showed strain-to-break values >60% without any added plasticizers.


Assuntos
Brassica rapa/química , Fracionamento Químico/métodos , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Fenômenos Mecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...