Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 21(1): 197-208, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307107

RESUMO

Fungal succession in rotting wood shows a surprising abundance of ectomycorrhizal (EM) fungi during the late decomposition stages. To better understand the links between EM fungi and saprotrophic fungi, we investigated the potential capacities of the EM fungus Paxillus involutus to mobilize nutrients from necromass of Postia placenta, a wood rot fungus, and to transfer these elements to its host tree. In this aim, we used pure cultures of P. involutus in the presence of labelled Postia necromass (15 N/13 C) as nutrient source, and a monoxenic mycorrhized pine experiment composed of labelled Postia necromass and P. involutus culture in interaction with pine seedlings. The isotopic labelling was measured in both experiments. In pure culture, P. involutus was able to mobilize N, but C as well, from the Postia necromass. In the symbiotic interaction experiment, we measured high 15 N enrichments in all plant and fungal compartments. Interestingly, 13 C remains mainly in the mycelium and mycorrhizas, demonstrating that the EM fungus transferred essentially N from the necromass to the tree. These observations reveal that fungal organic matter could represent a significant N source for EM fungi and trees, but also a C source for mycorrhizal fungi, including in symbiotic lifestyle.


Assuntos
Agaricales/metabolismo , Carbono/metabolismo , Micorrizas/metabolismo , Nitrogênio/metabolismo , Micélio/metabolismo , Pinus/química , Pinus/microbiologia , Plântula/microbiologia , Simbiose , Madeira/química , Madeira/microbiologia
2.
Oecologia ; 173(4): 1191-201, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23852028

RESUMO

Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models.


Assuntos
Raízes de Plantas/fisiologia , Solo , Árvores/fisiologia , Água , Biomassa , Deutério/análise , Secas , Ecossistema , Guiana Francesa , Modelos Teóricos , Isótopos de Oxigênio/análise , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Estações do Ano , Xilema/fisiologia
3.
PLoS One ; 8(5): e64626, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741356

RESUMO

Truffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy) or from soil organic matter (saprotrophy). The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum) production and situated in the west part of the Vosges, France, was labeled with (13)CO2. The transfer of (13)C from the leaves to the fine roots and T. melanosporum mycorrhizas was very slow compared with the results found in the literature for herbaceous plants or other tree species. The fine roots primarily acted as a carbon conduit; they accumulated little (13)C and transferred it slowly to the mycorrhizas. The mycorrhizas first formed a carbon sink and accumulated (13)C prior to ascocarp development. Then, the mycorrhizas transferred (13)C to the ascocarps to provide constitutive carbon (1.7 mg of (13)C per day). The ascocarps accumulated host carbon until reaching complete maturity, 200 days after the first labeling and 150 days after the second labeling event. This role of the Tuber ascocarps as a carbon sink occurred several months after the end of carbon assimilation by the host and at low temperature. This finding suggests that carbon allocated to the ascocarps during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost. Almost all of the constitutive carbon allocated to the truffles (1% of the total carbon assimilated by the tree during the growing season) came from the host.


Assuntos
Ascomicetos/metabolismo , Carbono/metabolismo , Corylus/metabolismo , Micorrizas/metabolismo , Transporte Biológico , Isótopos de Carbono , França , Folhas de Planta/metabolismo , Solo/química , Simbiose/fisiologia , Temperatura
4.
New Phytol ; 169(4): 765-77, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16441757

RESUMO

We examined the relationships among productivity, water use efficiency (WUE) and drought tolerance in 29 genotypes of Populus x euramericana (Populus deltoides x Populus nigra), and investigated whether some leaf traits could be used as predictors for productivity, WUE and drought tolerance. At Orléans, France, drought was induced on one field plot by withholding water, while a second plot remained irrigated and was used as a control. Recorded variables included stem traits (e.g. biomass) and leaf structural (e.g. leaf area) and functional traits [e.g. intrinsic water use efficiency (Wi) and carbon isotope discrimination (Delta)]. Productivity and Delta displayed large genotypic variability and were not correlated. Delta scaled negatively with Wi and positively with stomatal conductance under moderate drought, suggesting that the diversity for Delta was mainly driven by stomatal conductance. Most of the productive genotypes displayed a low level of drought tolerance (i.e. a large reduction of biomass), while the less productive genotypes presented a large range of drought tolerance. The ability to increase WUE in response to water deficit was necessary but not sufficient to explain the genotypic diversity of drought tolerance.


Assuntos
Populus/crescimento & desenvolvimento , Populus/genética , Água/metabolismo , Biomassa , Carbono/metabolismo , Cruzamentos Genéticos , Desidratação , Variação Genética , Genótipo , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Populus/metabolismo
5.
New Phytol ; 167(1): 53-62, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15948829

RESUMO

Here we tested whether some leaf traits could be used as predictors for productivity in a range of Populus deltoides x P. nigra clones. These traits were assessed in 3-yr-old rooted cuttings from 29 clones growing in an open field trial, in a five randomized complete block design, under optimal irrigation. Variables were assigned to four groups describing productivity (above-ground biomass, total leaf area), leaf growth (total number of leaves increment rate), leaf structure (area of the largest leaf, specific leaf area, carbon and nitrogen contents), and carbon isotope discrimination in the leaves (Delta). High-yielding clones displayed larger total leaf area and individual leaf area, while no correlation could be detected between productivity and either leaf structure or Delta. By contrast, Delta was negatively correlated with number of leaves increment rate and leaf N content. Our study shows that there is a potential to improve water-use efficiency in poplar without necessarily reducing the overall productivity.


Assuntos
Isótopos de Carbono/metabolismo , Cruzamentos Genéticos , Folhas de Planta/fisiologia , Populus/genética , Populus/fisiologia , Fatores de Tempo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...