Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38620149

RESUMO

Electron sources are crucial elements in diverse applications such as electron microscopes, synchrotrons, and free-electron lasers. Nanometer-sharp needle tips are electron emitters with the highest beam quality, yet for a single needle the current is limited. Combining the emission of multiple needles promises large current yields while preserving the individual emitters' favorable properties. We present an ultrafast electron source consisting of a lithographically fabricated array of sharp gold tips illuminated with 25 fs laser pulses. The source provides up to 2000 electrons per pulse for moderate laser peak intensities of 1011 W/cm2 and a narrow energy width of 0.5 ± 0.05 eV at low current. The electron beam has a well-behaved Gaussian profile and is highly collimated, yielding a small normalized emittance on the order of nm·rad. These properties are well suited for applications requiring both high current and spatial resolution, such as free-electron light sources and chip-based particle accelerators.

2.
Nature ; 622(7983): 476-480, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37853151

RESUMO

Particle accelerators are essential tools in a variety of areas of industry, science and medicine1-4. Typically, the footprint of these machines starts at a few square metres for medical applications and reaches the size of large research centres. Acceleration of electrons with the help of laser light inside of a photonic nanostructure represents a microscopic alternative with potentially orders-of-magnitude decrease in cost and size5-16. Despite large efforts in research on dielectric laser acceleration17,18, including complex electron phase space control with optical forces19-21, noteworthy energy gains have not been shown so far. Here we demonstrate a scalable nanophotonic electron accelerator that coherently combines particle acceleration and transverse beam confinement, and accelerates and guides electrons over a considerable distance of 500 µm in a just 225-nm-wide channel. We observe a maximum coherent energy gain of 12.3 keV, equalling a substantial 43% energy increase of the initial 28.4 keV to 40.7 keV. We expect this work to lead directly to the advent of nanophotonic accelerators offering high acceleration gradients up to the GeV m-1 range utilizing high-damage-threshold dielectric materials22 at minimal size requirements14. These on-chip particle accelerators will enable transformative applications in medicine, industry, materials research and science14,23,24.

3.
Nano Lett ; 23(15): 7114-7119, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470781

RESUMO

We present laser-driven rescattering of electrons at a nanometric protrusion (nanotip), which is fabricated with an in situ neon ion sputtering technique applied to a tungsten needle tip. Electron energy spectra obtained before and after the sputtering show rescattering features, such as a plateau and high-energy cutoff. Extracting the optical near-field enhancement in both cases, we observe a strong increase of more than 2-fold for the nanotip. Accompanying finite-difference time-domain (FDTD) simulations show a good match with the experimentally extracted near-field strengths. Additionally, high electric field localization for the nanotip is found. The combination of transmission electron microscope imaging of such nanotips and the determination of the near-field enhancement by electron rescattering represent a full characterization of the electric near-field of these intriguing electron emitters. Ultimately, nanotips as small as single nanometers can be produced, which is of utmost interest for electron diffraction experiments and low-emittance electron sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...