Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 23(17): 22579-86, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368225

RESUMO

The precise tracking of micron sized colloidal particles - held in the vicinity of each other using optical tweezers - is an elegant way to gain information about the particle-particle pair interaction potential. The accuracy of the method, however, relies strongly on the tracking precision. Particularly the elimination of systematic errors in the position detection due to overlapping particle diffraction patterns remains a great challenge. Here we propose a template based particle finding algorithm that circumvents these problems by tracking only a fraction of the particle image that is insignificantly affected by nearby colloids. Under realistic experimental conditions we show that our algorithm significantly reduces systematic errors compared to standard tracking methods. Moreover our approach should in principle be applicable to almost arbitrary shaped particles as the template can be adapted to any geometry.

2.
Nat Commun ; 6: 7460, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26096622

RESUMO

Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir-Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems.

3.
J Phys Chem A ; 115(44): 12380-9, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21970552

RESUMO

We combine the technique of femtosecond degenerate four-wave mixing (fs-DFWM) with a high repetition-rate pulsed supersonic jet source to obtain the rotational coherence spectrum (RCS) of cold cyclohexane (C(6)H(12)) with high signal/noise ratio. In the jet expansion, the near-parallel flow pattern combined with rapid translational cooling effectively eliminate dephasing collisions, giving near-constant RCS signal intensities over time delays up to 5 ns. The vibrational cooling in the jet eliminates the thermally populated vibrations that complicate the RCS coherences of cyclohexane at room temperature [Brügger, G.; et al. J. Phys. Chem. A 2011, 115, 9567]. The rotational cooling reduces the high-J rotational-state population, yielding the most accurate ground-state rotational constant to date, B(0) = 4305.859(9) MHz. Based on this B(0), a reanalysis of previous room-temperature gas-cell RCS measurements of cyclohexane gives improved vibration-rotation interaction constants for the ν(32), ν(6), ν(16), and ν(24) vibrational states. Combining the experimental B(0)(C(6)H(12)) with CCSD(T) calculations yields a very accurate semiexperimental equilibrium structure of the chair isomer of cyclohexane.

4.
J Phys Chem A ; 115(34): 9567-78, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21557553

RESUMO

We combine femtosecond time-resolved rotational coherence spectroscopy with high-level ab initio theory to obtain accurate structural information for the nonpolar molecules cyclohexane (C(6)H(12)) and cyclohexane-d(12) (C(6)D(12)). We measured the rotational B(0) and centrifugal distortion constants D(J), D(JK) of the v = 0 states of C(6)H(12) and C(6)D(12) to high accuracy, for example, B(0)(C(6)H(12)) = 4306.08(5) MHz, as well as B(v) for the vibrationally excited states ν(32), ν(6), ν(16) and ν(24) of C(6)H(12) and additionally ν(15) for C(6)D(12). To successfully reproduce the experimental RCS transient, the overtone and combination levels 2ν(32), 3ν(32), ν(32) + ν(6), and ν(32) + ν(16) had to be included in the RCS model calculations. The experimental rotational constants are compared to those obtained at the second-order Møller-Plesset (MP2) level. Combining the experimental and calculated rotational constants with the calculated equilibrium bond lengths and angles allows determination of accurate semiexperimental equilibrium structure parameters, for example, r(e)(C-C) = 1.526 ± 0.001 Å, r(e)(C-H(axial)) = 1.098 ± 0.001 Å, and r(e)(C-H(equatorial)) = 1.093 ± 0.001 Å. The equilibrium C-C bond length of C(6)H(12) is only 0.004 Å longer than that of ethane. The effect of ring strain due to the unfavorable gauche interactions is mainly manifested as small deviations from the C-C-C, C-C-H(axial), and C-C-H(equatorial) angles from the tetrahedral value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...