Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Environ Virol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780822

RESUMO

Wastewater-based epidemiology offers a complementary approach to clinical case-based surveillance of emergent diseases and can help identify regions with infected people to prioritize clinical surveillance strategies. However, tracking emergent diseases in wastewater requires reliance on novel testing assays with uncertain sensitivity and specificity. Limited pathogen shedding may cause detection to be below the limit of quantification or bordering the limit of detection. Here, we investigated how the definition of limit of detection for quantitative polymerase chain reaction (qPCR) impacts epidemiological insights during an mpox outbreak in Switzerland. 365 wastewater samples from three wastewater treatment plants in Switzerland from 9 March through 31 October 2022 were analyzed for mpox DNA using qPCR. We detected mpox DNA in 22% (79 of 365) wastewater samples based on a liberal definition of qPCR detection as any exponentially increasing fluorescence above the threshold. Based on a more restrictive definition as the lowest concentration at which there is 95% likelihood of detection, detection was 1% (5 of 365). The liberal definition shows high specificity (90%) and accuracy (78%), but moderate sensitivity (64%) when benchmarked against available clinical case reporting, which contrasts with higher specificity (98%) but lower sensitivity (10%) and accuracy (56%) of the 95% likelihood definition. Wastewater-based epidemiology applied to an emergent pathogen will require optimizing public health trade-offs between reporting data with high degrees of uncertainty and delaying communication and associated action. Information sharing with relevant public health stakeholders could couple early results with clear descriptions of uncertainty.Impact Statement: When a novel pathogen threatens to enter a community, wastewater-based epidemiology offers an opportunity to track its emergence and spread. However, rapid deployment of methods for to detect a novel pathogen may rely on assays with uncertain sensitivity and specificity. Benchmarking the detection of mpox DNA in Swiss wastewaters with reported clinical cases in 2022, we demonstrate how definitions of detection of a qPCR assay influence epidemiological insights from wastewater. The results highlight the need for information sharing between public health stakeholders that couple early insights from wastewater with descriptions of methodological uncertainty to optimize public health actions.

2.
Plasmid ; 128: 102706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37652194

RESUMO

Antimicrobial resistance (AR) mechanisms encoded on plasmids can affect other phenotypic traits in bacteria, including biofilm formation. These effects may be important contributors to the spread of AR and the evolutionary success of plasmids, but it is not yet clear how common such effects are for clinical plasmids/bacteria, and how they vary among different plasmids and host strains. Here, we used a combinatorial approach to test the effects of clinical AR plasmids on biofilm formation and population growth in clinical and laboratory Escherichia coli strains. In most of the 25 plasmid-bacterium combinations tested, we observed no significant change in biofilm formation upon plasmid introduction, contrary to the notion that plasmids frequently alter biofilm formation. In a few cases we detected altered biofilm formation, and these effects were specific to particular plasmid-bacterium combinations. By contrast, we found a relatively strong effect of a chromosomal streptomycin-resistance mutation (in rpsL) on biofilm formation. Further supporting weak and host-strain-dependent effects of clinical plasmids on bacterial phenotypes in the combinations we tested, we found growth costs associated with plasmid carriage (measured in the absence of antibiotics) were moderate and varied among bacterial strains. These findings suggest some key clinical resistance plasmids cause only mild phenotypic disruption to their host bacteria, which may contribute to the persistence of plasmids in the absence of antibiotics.


Assuntos
Escherichia coli , Crescimento Demográfico , Escherichia coli/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...