Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4538, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507406

RESUMO

Inwardly rectifying potassium (Kir) channels open at the 'helix bundle crossing' (HBC), formed by the M2 helices at the cytoplasmic end of the transmembrane pore. Introduced negative charges at the HBC (G178D) in Kir2.2 channels forces opening, allowing pore wetting and free movement of permeant ions between the cytoplasm and the inner cavity. Single-channel recordings reveal striking, pH-dependent, subconductance behaviors in G178D (or G178E and equivalent Kir2.1[G177E]) mutant channels, with well-resolved non-cooperative subconductance levels. Decreasing cytoplasmic pH shifts the probability towards lower conductance levels. Molecular dynamics simulations show how protonation of Kir2.2[G178D], or the D173 pore-lining residues, changes solvation, K+ ion occupancy, and K+ conductance. Ion channel gating and conductance are classically understood as separate processes. The present data reveal how individual protonation events change the electrostatic microenvironment of the pore, resulting in step-wise alterations of ion pooling, and hence conductance, that appear as 'gated' substates.


Assuntos
Simulação de Dinâmica Molecular , Oócitos , Íons , Citoplasma
2.
Res Sq ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993294

RESUMO

Inwardly rectifying potassium (Kir) channels play a critical role in stabilizing the membrane potential, thus controlling numerous physiological phenomena in multiple tissues. Channel conductance is activated by cytoplasmic modulators that open the channel at the 'helix bundle crossing' (HBC), formed by the coming together of the M2 helices from each of the four subunits, at the cytoplasmic end of the transmembrane pore. We introduced a negative charge at the bundle crossing region (G178D) in classical inward rectifier Kir2.2 channel subunits that forces channel opening, allowing pore wetting and free movement of permeant ions between the cytoplasm and the inner cavity. Single-channel recordings reveal a striking pH-dependent subconductance behavior in G178D (or G178E and equivalent Kir2.1[G177E]) mutant channels that reflects individual subunit events. These subconductance levels are well resolved temporally and occur independently, with no evidence of cooperativity. Decreasing cytoplasmic pH shifts the probability towards lower conductance levels, and molecular dynamics simulations show how protonation of Kir2.2[G178D] and, additionally, the rectification controller (D173) pore-lining residues leads to changes in pore solvation, K+ ion occupancy, and ultimately K+ conductance. While subconductance gating has long been discussed, resolution and explanation have been lacking. The present data reveals how individual protonation events change the electrostatic microenvironment of the pore, resulting in distinct, uncoordinated, and relatively long-lasting conductance states, which depend on levels of ion pooling in the pore and the maintenance of pore wetting. Gating and conductance are classically understood as separate processes in ion channels. The remarkable sub-state gating behavior of these channels reveals how intimately connected 'gating' and 'conductance' are in reality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...