Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(10): e2213896120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848554

RESUMO

DNA is replicated according to a defined spatiotemporal program that is linked to both gene regulation and genome stability. The evolutionary forces that have shaped replication timing programs in eukaryotic species are largely unknown. Here, we studied the molecular causes and consequences of replication timing evolution across 94 humans, 95 chimpanzees, and 23 rhesus macaques. Replication timing differences recapitulated the species' phylogenetic tree, suggesting continuous evolution of the DNA replication timing program in primates. Hundreds of genomic regions had significant replication timing variation between humans and chimpanzees, of which 66 showed advances in replication origin firing in humans, while 57 were delayed. Genes overlapping these regions displayed correlated changes in expression levels and chromatin structure. Many human-chimpanzee variants also exhibited interindividual replication timing variation, pointing to ongoing evolution of replication timing at these loci. Association of replication timing variation with genetic variation revealed that DNA sequence evolution can explain replication timing variation between species. Taken together, DNA replication timing shows substantial and ongoing evolution in the human lineage that is driven by sequence alterations and could impact regulatory evolution at specific genomic sites.


Assuntos
Período de Replicação do DNA , Pan troglodytes , Animais , Humanos , Pan troglodytes/genética , Período de Replicação do DNA/genética , Macaca mulatta/genética , Filogenia , Eucariotos
2.
Nat Commun ; 12(1): 6746, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799581

RESUMO

DNA replication follows a strict spatiotemporal program that intersects with chromatin structure but has a poorly understood genetic basis. To systematically identify genetic regulators of replication timing, we exploited inter-individual variation in human pluripotent stem cells from 349 individuals. We show that the human genome's replication program is broadly encoded in DNA and identify 1,617 cis-acting replication timing quantitative trait loci (rtQTLs) - sequence determinants of replication initiation. rtQTLs function individually, or in combinations of proximal and distal regulators, and are enriched at sites of histone H3 trimethylation of lysines 4, 9, and 36 together with histone hyperacetylation. H3 trimethylation marks are individually repressive yet synergistically associate with early replication. We identify pluripotency-related transcription factors and boundary elements as positive and negative regulators of replication timing, respectively. Taken together, human replication timing is controlled by a multi-layered mechanism with dozens of effectors working combinatorially and following principles analogous to transcription regulation.


Assuntos
Período de Replicação do DNA , Genoma Humano , Células-Tronco Pluripotentes/metabolismo , Acetilação , Variação Biológica da População/genética , Metilação de DNA , Conjuntos de Dados como Assunto , Feminino , Regulação da Expressão Gênica , Código das Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Locos de Características Quantitativas , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
3.
Bioinformatics ; 37(22): 4001-4005, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33704387

RESUMO

MOTIVATION: Genomic DNA replicates according to a reproducible spatiotemporal program, with some loci replicating early in S phase while others replicate late. Despite being a central cellular process, DNA replication timing studies have been limited in scale due to technical challenges. RESULTS: We present TIGER (Timing Inferred from Genome Replication), a computational approach for extracting DNA replication timing information from whole genome sequence data obtained from proliferating cell samples. The presence of replicating cells in a biological specimen leads to non-uniform representation of genomic DNA that depends on the timing of replication of different genomic loci. Replication dynamics can hence be observed in genome sequence data by analyzing DNA copy number along chromosomes while accounting for other sources of sequence coverage variation. TIGER is applicable to any species with a contiguous genome assembly and rivals the quality of experimental measurements of DNA replication timing. It provides a straightforward approach for measuring replication timing and can readily be applied at scale. AVAILABILITY AND IMPLEMENTATION: TIGER is available at https://github.com/TheKorenLab/TIGER. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Período de Replicação do DNA , DNA , DNA/genética , Genoma , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...